Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/math/vector.h @ 5610

Last change on this file since 5610 was 5435, checked in by bensch, 19 years ago

orxonox/trunk: power-ups implemented (simple-mode)

File size: 15.6 KB
RevLine 
[5420]1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Christian Meyer
13   co-programmer: ...
14*/
15
[4578]16/*!
[5008]17 * @file vector.h
18 * A basic 3D math framework
19 *
20 * Contains classes to handle vectors, lines, rotations and planes
[4578]21*/
[2043]22
[3224]23#ifndef _VECTOR_H
24#define _VECTOR_H
[2043]25
26#include <math.h>
[3860]27#include "compiler.h"
[4545]28#include "abstract_model.h"
[3449]29//! PI the circle-constant
[2043]30#define PI 3.14159265359f
31
[2190]32//! 3D Vector
[2043]33/**
[4578]34        Class to handle 3D Vectors
[2043]35*/
36class Vector {
37
38
[4476]39 public:
[2043]40  Vector (float x, float y, float z) : x(x), y(y), z(z) {}  //!< assignment constructor
41  Vector () : x(0), y(0), z(0) {}
42  ~Vector () {}
43
[5052]44  /** @param v: the Vecor to compare with this one @returns true, if the Vecors are the same, false otherwise */
45  inline bool operator== (const Vector& v) const { return (this->x==v.x&&this->y==v.y&&this->z==v.z)?true:false; };
[4836]46  /** @param index The index of the "array" @returns the x/y/z coordinate */
[4562]47  inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; }
[4992]48  /** @param v The vector to add @returns the addition between two vectors (this + v) */
[4476]49  inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); };
[4992]50  /** @param v The vector to add @returns the addition between two vectors (this + v) */
[4609]51  inline Vector operator+ (const sVec3D& v) const { return Vector(x + v[0], y + v[1], z + v[2]); };
[4836]52  /** @param v The vector to add  @returns the addition between two vectors (this += v) */
[4476]53  inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; };
[4836]54  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[4609]55  inline const Vector& operator+= (const sVec3D& v) { this->x += v[0]; this->y += v[1]; this->z += v[2]; return *this; };
[4836]56  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[3819]57  inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); }
[4836]58  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[4609]59  inline Vector operator- (const sVec3D& v) const { return Vector(x - v[0], y - v[1], z - v[2]); }
[4836]60  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
[4476]61  inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; };
[4836]62  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
[4609]63  inline const Vector& operator-= (const sVec3D& v) { this->x -= v[0]; this->y -= v[1]; this->z -= v[2]; return *this; };
[4836]64  /** @param v the second vector  @returns The dotProduct between two vector (this (dot) v) */
[4476]65  inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; };
[4836]66  /** @todo strange */
[4476]67  inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; };
[4836]68  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this * f) */
[4476]69  inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); };
[4836]70  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this *= f) */
[4476]71  inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; };
[4836]72  /** @param f a factor to divide the vector with @returns the vector divided by f (this / f) */
[4997]73  inline Vector operator/ (float f) const { return (unlikely(f == 0.0))?Vector(0,0,0):Vector(this->x / f, this->y / f, this->z / f); };
[4836]74  /** @param f a factor to divide the vector with @returns the vector divided by f (this /= f) */
[4476]75  inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; };
[4992]76  /**  copy constructor @todo (i do not know it this is faster) @param v the vector to assign to this vector. @returns the vector v */
[4476]77  inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; };
[4992]78  /** copy constructor* @param v the sVec3D to assign to this vector. @returns the vector v */
[4545]79  inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; }
[4836]80  /** @param v: the other vector \return the dot product of the vectors */
[4476]81  float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; };
[4836]82  /** @param v: the corss-product partner @returns the cross-product between this and v (this (x) v) */
[3966]83  inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); }
[4992]84  /** scales the this vector with v* @param v the vector to scale this with */
[4476]85  void scale(const Vector& v) {   x *= v.x;  y *= v.y; z *= v.z; };
[4836]86  /** @returns the length of the vector */
[3819]87  inline float len() const { return sqrt (x*x+y*y+z*z); }
[4992]88  /** normalizes the vector */
[5053]89  inline void normalize() { float l = len(); if( unlikely(l == 0.0))return; this->x=this->x/l; this->y=this->y/l; this->z=this->z/l; };
[4372]90  Vector getNormalized() const;
[2551]91  Vector abs();
[3541]92
[3966]93  void debug() const;
[4476]94
95 public:
96  float    x;     //!< The x Coordinate of the Vector.
97  float    y;     //!< The y Coordinate of the Vector.
98  float    z;     //!< The z Coordinate of the Vector.
[2043]99};
100
[4476]101/**
[4836]102 *  calculate the angle between two vectors in radiances
103 * @param v1: a vector
104 * @param v2: another vector
105 * @return the angle between the vectors in radians
[4476]106*/
107inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); };
108/**
[4836]109 *  calculate the angle between two vectors in degrees
110 * @param v1: a vector
111 * @param v2: another vector
112 * @return the angle between the vectors in degrees
[4476]113*/
114inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; };
[2043]115
[5008]116/** an easy way to create a Random Vector @param sideLength the length of the Vector (x not sqrt(x^2...)) */
117#define VECTOR_RAND(sideLength)  (Vector((float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5) * sideLength)
[4476]118
[5008]119
[2190]120//! Quaternion
[2043]121/**
[4476]122   Class to handle 3-dimensional rotation efficiently
[2190]123*/
124class Quaternion
125{
126 public:
[4994]127  /** creates a Default quaternion (multiplicational identity Quaternion)*/
[3822]128  inline Quaternion () { w = 1; v = Vector(0,0,0); }
[4994]129  /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */
[3971]130  inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; }
[3541]131  Quaternion (float m[4][4]);
[4994]132  /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */
[3822]133  inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); }
[3541]134  Quaternion (const Vector& dir, const Vector& up);
135  Quaternion (float roll, float pitch, float yaw);
[5052]136
137  /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */
138  inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; };
[4997]139  /** @param f: a real value @return a Quaternion containing the quotient */
140  inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); };
[4836]141  /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */
[4477]142  inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;}
[4997]143  /** @param f: a real value @return a Quaternion containing the product */
144  inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); };
[4836]145  /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */
[4477]146  inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;}
[4999]147  /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */
148  Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y,
149                                                                         this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z,
150                                                                         this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x),
[5006]151                                                                         this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); };
[4836]152  /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */
[4997]153  inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; };
154  /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */
155  inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); };
156  /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */
157  inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; };
[4836]158  /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */
[4477]159  inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); };
[4836]160  /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */
[4477]161  inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; };
[4836]162  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */
[3822]163  inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); }
[4836]164  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */
[4477]165  inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; };
[4994]166  /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */
[3966]167  inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;}
[4994]168  /** conjugates this Quaternion @returns the conjugate */
[4998]169  inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); };
[4997]170  /** @returns the norm of The Quaternion */
[5000]171  inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
[4997]172  /** @returns the inverted Quaterntion of this */
[5000]173  inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
[5419]174  /** @returns the dot Product of a Quaternion */
175  inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; };
176  /** @retuns the Distance between two Quaternions */
177  inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); };
[4997]178  /** @param v: the Vector  @return a new Vector representing v rotated by the Quaternion */
179  inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; };
[3541]180  void matrix (float m[4][4]) const;
[4998]181  /** @returns the normalized Quaternion (|this|) */
182  inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); };
183  /** normalizes the current Quaternion */
184  inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; };
[4578]185
[4998]186  /** @returns the rotational axis of this Quaternion */
187  inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ };
188  /** @returns the rotational angle of this Quaternion around getSpacialAxis()  !! IN DEGREE !! */
[5435]189  inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); };
[4998]190
191  static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t);
192
[3541]193  void debug();
[5000]194  void debug2();
[4477]195
[4998]196
[4477]197 public:
198  Vector    v;        //!< Imaginary Vector
199  float     w;        //!< Real part of the number
200
[2190]201};
202
[3971]203
204
205
[2190]206//! 3D rotation (OBSOLETE)
207/**
[2043]208  Class to handle 3-dimensional rotations.
209  Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix
210*/
211class Rotation {
212  public:
[4578]213
[2043]214  float m[9]; //!< 3x3 Rotation Matrix
[4578]215
[2043]216  Rotation ( const Vector& v);
217  Rotation ( const Vector& axis, float angle);
218  Rotation ( float pitch, float yaw, float roll);
219  Rotation ();
220  ~Rotation () {}
[4578]221
[2190]222  Rotation operator* (const Rotation& r);
[4578]223
[2190]224  void glmatrix (float* buffer);
[2043]225};
[2551]226
[2043]227//!< Apply a rotation to a vector
[3228]228Vector rotateVector( const Vector& v, const Rotation& r);
[2043]229
230//! 3D line
231/**
232  Class to store Lines in 3-dimensional space
233
234  Supports line-to-line distance measurements and rotation
235*/
236class Line
237{
238  public:
[4578]239
[2043]240  Vector r;   //!< Offset
241  Vector a;   //!< Direction
[4578]242
[2043]243  Line ( Vector r, Vector a) : r(r), a(a) {}  //!< assignment constructor
244  Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {}
245  ~Line () {}
[4578]246
[2043]247  float distance (const Line& l) const;
[3228]248  float distancePoint (const Vector& v) const;
[4578]249  float distancePoint (const sVec3D& v) const;
[2043]250  Vector* footpoints (const Line& l) const;
251  float len () const;
[4578]252
[2043]253  void rotate(const Rotation& rot);
254};
255
256//! 3D plane
257/**
258  Class to handle planes in 3-dimensional space
[4578]259
[2043]260  Critical for polygon-based collision detection
261*/
262class Plane
263{
264  public:
[4578]265
[2043]266  Vector n;   //!< Normal vector
267  float k;    //!< Offset constant
[4578]268
[2043]269  Plane (Vector a, Vector b, Vector c);
270  Plane (Vector norm, Vector p);
[4611]271  Plane (Vector norm, sVec3D p);
[2043]272  Plane (Vector n, float k) : n(n), k(k) {} //!< assignment constructor
273  Plane () : n(Vector(1,1,1)), k(0) {}
274  ~Plane () {}
[4578]275
[3228]276  Vector intersectLine (const Line& l) const;
277  float distancePoint (const Vector& p) const;
[4585]278  float distancePoint (const sVec3D& p) const;
[3228]279  float locatePoint (const Vector& p) const;
[2043]280};
281
[4845]282
283
284//! A class that represents a rectangle, this is needed for SpatialSeparation
285class Rectangle
286{
287
288  public:
[5215]289    Rectangle() { this->center = Vector(); }
290    Rectangle(const Vector &center, float len) { this->center = Vector(center.x, center.y, center.z); this->axis[0] = len; this->axis[1] = len; }
[4845]291    virtual ~Rectangle() {}
292
293    /** \brief sets the center of the rectangle to a defined vector @param center the new center */
[5215]294   inline void setCenter(const Vector &center) { this->center = center;}
[4845]295    /** \brief sets the center of the rectangle to a defined vector @param x coord of the center @param y coord of the center @param z coord of the center */
[5215]296   inline void setCenter(float x, float y, float z) { this->center.x = x; this->center.y = y; this->center.z = z; }
[4845]297   /** \brief returns the center of the rectangle to a defined vector @returns center the new center */
[5215]298   inline const Vector& getCenter() const { return this->center; }
[4845]299
300   /** \brief sets both axis of the rectangle to a defined vector @param unityLength the new center */
301   inline void setAxis(float unityLength) { this->axis[0] = unityLength; this->axis[1] = unityLength; }
302   /** \brief sets both axis of the rectangle to a defined vector @param v1 the length of the x axis @param v2 the length of the z axis*/
303   inline void setAxis(float v1, float v2) { this->axis[0] = v1; this->axis[1] = v2; }
[4853]304   /** \brief gets one axis length of the rectangle  @returns the length of the axis 0 */
305   inline float getAxis() { return this-> axis[0]; }
[4845]306
307  private:
[5215]308    Vector          center;
[4851]309    float           axis[2];
[4845]310};
[4851]311
312
[3224]313#endif /* _VECTOR_H */
[4997]314
Note: See TracBrowser for help on using the repository browser.