Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: orxonox.OLD/trunk/src/lib/math/vector.h @ 5979

Last change on this file since 5979 was 5692, checked in by bensch, 19 years ago

orxonox/trunk: no more valgrind warnings :)))))))

File size: 15.7 KB
RevLine 
[5420]1/*
2   orxonox - the future of 3D-vertical-scrollers
3
4   Copyright (C) 2004 orx
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11### File Specific:
12   main-programmer: Christian Meyer
13   co-programmer: ...
14*/
15
[4578]16/*!
[5008]17 * @file vector.h
18 * A basic 3D math framework
19 *
20 * Contains classes to handle vectors, lines, rotations and planes
[4578]21*/
[2043]22
[3224]23#ifndef _VECTOR_H
24#define _VECTOR_H
[2043]25
26#include <math.h>
[3860]27#include "compiler.h"
[3449]28//! PI the circle-constant
[2043]29#define PI 3.14159265359f
30
[5672]31
32//! this is a small and performant 3D vector
33typedef float sVec3D[3];
34
35
36//! small and performant 2D vector
37typedef float sVec2D[2];
38
39
40
[2190]41//! 3D Vector
[2043]42/**
[4578]43        Class to handle 3D Vectors
[2043]44*/
45class Vector {
[4476]46 public:
[2043]47  Vector (float x, float y, float z) : x(x), y(y), z(z) {}  //!< assignment constructor
48  Vector () : x(0), y(0), z(0) {}
49  ~Vector () {}
50
[5052]51  /** @param v: the Vecor to compare with this one @returns true, if the Vecors are the same, false otherwise */
52  inline bool operator== (const Vector& v) const { return (this->x==v.x&&this->y==v.y&&this->z==v.z)?true:false; };
[4836]53  /** @param index The index of the "array" @returns the x/y/z coordinate */
[4562]54  inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; }
[4992]55  /** @param v The vector to add @returns the addition between two vectors (this + v) */
[4476]56  inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); };
[4992]57  /** @param v The vector to add @returns the addition between two vectors (this + v) */
[4609]58  inline Vector operator+ (const sVec3D& v) const { return Vector(x + v[0], y + v[1], z + v[2]); };
[4836]59  /** @param v The vector to add  @returns the addition between two vectors (this += v) */
[4476]60  inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; };
[4836]61  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[4609]62  inline const Vector& operator+= (const sVec3D& v) { this->x += v[0]; this->y += v[1]; this->z += v[2]; return *this; };
[4836]63  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[3819]64  inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); }
[4836]65  /** @param v The vector to substract  @returns the substraction between two vectors (this - v) */
[4609]66  inline Vector operator- (const sVec3D& v) const { return Vector(x - v[0], y - v[1], z - v[2]); }
[4836]67  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
[4476]68  inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; };
[4836]69  /** @param v The vector to substract  @returns the substraction between two vectors (this -= v) */
[4609]70  inline const Vector& operator-= (const sVec3D& v) { this->x -= v[0]; this->y -= v[1]; this->z -= v[2]; return *this; };
[4836]71  /** @param v the second vector  @returns The dotProduct between two vector (this (dot) v) */
[4476]72  inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; };
[4836]73  /** @todo strange */
[4476]74  inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; };
[4836]75  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this * f) */
[4476]76  inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); };
[4836]77  /** @param f a factor to multiply the vector with @returns the vector multiplied by f (this *= f) */
[4476]78  inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; };
[4836]79  /** @param f a factor to divide the vector with @returns the vector divided by f (this / f) */
[4997]80  inline Vector operator/ (float f) const { return (unlikely(f == 0.0))?Vector(0,0,0):Vector(this->x / f, this->y / f, this->z / f); };
[4836]81  /** @param f a factor to divide the vector with @returns the vector divided by f (this /= f) */
[4476]82  inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; };
[4992]83  /**  copy constructor @todo (i do not know it this is faster) @param v the vector to assign to this vector. @returns the vector v */
[4476]84  inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; };
[4992]85  /** copy constructor* @param v the sVec3D to assign to this vector. @returns the vector v */
[4545]86  inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; }
[4836]87  /** @param v: the other vector \return the dot product of the vectors */
[4476]88  float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; };
[4836]89  /** @param v: the corss-product partner @returns the cross-product between this and v (this (x) v) */
[3966]90  inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); }
[4992]91  /** scales the this vector with v* @param v the vector to scale this with */
[4476]92  void scale(const Vector& v) {   x *= v.x;  y *= v.y; z *= v.z; };
[4836]93  /** @returns the length of the vector */
[3819]94  inline float len() const { return sqrt (x*x+y*y+z*z); }
[4992]95  /** normalizes the vector */
[5053]96  inline void normalize() { float l = len(); if( unlikely(l == 0.0))return; this->x=this->x/l; this->y=this->y/l; this->z=this->z/l; };
[4372]97  Vector getNormalized() const;
[2551]98  Vector abs();
[3541]99
[3966]100  void debug() const;
[4476]101
102 public:
103  float    x;     //!< The x Coordinate of the Vector.
104  float    y;     //!< The y Coordinate of the Vector.
105  float    z;     //!< The z Coordinate of the Vector.
[2043]106};
107
[4476]108/**
[4836]109 *  calculate the angle between two vectors in radiances
110 * @param v1: a vector
111 * @param v2: another vector
112 * @return the angle between the vectors in radians
[4476]113*/
114inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); };
115/**
[4836]116 *  calculate the angle between two vectors in degrees
117 * @param v1: a vector
118 * @param v2: another vector
119 * @return the angle between the vectors in degrees
[4476]120*/
121inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; };
[2043]122
[5008]123/** an easy way to create a Random Vector @param sideLength the length of the Vector (x not sqrt(x^2...)) */
124#define VECTOR_RAND(sideLength)  (Vector((float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5, (float)rand()/RAND_MAX -.5) * sideLength)
[4476]125
[5008]126
[2190]127//! Quaternion
[2043]128/**
[4476]129   Class to handle 3-dimensional rotation efficiently
[2190]130*/
131class Quaternion
132{
133 public:
[4994]134  /** creates a Default quaternion (multiplicational identity Quaternion)*/
[3822]135  inline Quaternion () { w = 1; v = Vector(0,0,0); }
[4994]136  /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */
[3971]137  inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; }
[3541]138  Quaternion (float m[4][4]);
[4994]139  /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */
[3822]140  inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); }
[3541]141  Quaternion (const Vector& dir, const Vector& up);
142  Quaternion (float roll, float pitch, float yaw);
[5052]143
144  /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */
145  inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; };
[4997]146  /** @param f: a real value @return a Quaternion containing the quotient */
147  inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); };
[4836]148  /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */
[4477]149  inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;}
[4997]150  /** @param f: a real value @return a Quaternion containing the product */
151  inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); };
[4836]152  /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */
[4477]153  inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;}
[4999]154  /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */
155  Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y,
156                                                                         this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z,
157                                                                         this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x),
[5006]158                                                                         this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); };
[4836]159  /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */
[4997]160  inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; };
161  /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */
162  inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); };
163  /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */
164  inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; };
[4836]165  /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */
[4477]166  inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); };
[4836]167  /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */
[4477]168  inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; };
[4836]169  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */
[3822]170  inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); }
[4836]171  /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */
[4477]172  inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; };
[4994]173  /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */
[3966]174  inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;}
[4994]175  /** conjugates this Quaternion @returns the conjugate */
[4998]176  inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); };
[4997]177  /** @returns the norm of The Quaternion */
[5000]178  inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
[4997]179  /** @returns the inverted Quaterntion of this */
[5000]180  inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); };
[5419]181  /** @returns the dot Product of a Quaternion */
182  inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; };
183  /** @retuns the Distance between two Quaternions */
184  inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); };
[4997]185  /** @param v: the Vector  @return a new Vector representing v rotated by the Quaternion */
186  inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; };
[3541]187  void matrix (float m[4][4]) const;
[4998]188  /** @returns the normalized Quaternion (|this|) */
189  inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); };
190  /** normalizes the current Quaternion */
191  inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; };
[4578]192
[4998]193  /** @returns the rotational axis of this Quaternion */
194  inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ };
195  /** @returns the rotational angle of this Quaternion around getSpacialAxis()  !! IN DEGREE !! */
[5435]196  inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); };
[4998]197
198  static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t);
199
[3541]200  void debug();
[5000]201  void debug2();
[4477]202
[4998]203
[4477]204 public:
205  Vector    v;        //!< Imaginary Vector
206  float     w;        //!< Real part of the number
207
[2190]208};
209
[3971]210
211
212
[2190]213//! 3D rotation (OBSOLETE)
214/**
[2043]215  Class to handle 3-dimensional rotations.
216  Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix
217*/
218class Rotation {
219  public:
[4578]220
[2043]221  float m[9]; //!< 3x3 Rotation Matrix
[4578]222
[2043]223  Rotation ( const Vector& v);
224  Rotation ( const Vector& axis, float angle);
225  Rotation ( float pitch, float yaw, float roll);
226  Rotation ();
227  ~Rotation () {}
[4578]228
[2190]229  Rotation operator* (const Rotation& r);
[4578]230
[2190]231  void glmatrix (float* buffer);
[2043]232};
[2551]233
[2043]234//!< Apply a rotation to a vector
[3228]235Vector rotateVector( const Vector& v, const Rotation& r);
[2043]236
237//! 3D line
238/**
239  Class to store Lines in 3-dimensional space
240
241  Supports line-to-line distance measurements and rotation
242*/
243class Line
244{
245  public:
[4578]246
[2043]247  Vector r;   //!< Offset
248  Vector a;   //!< Direction
[4578]249
[2043]250  Line ( Vector r, Vector a) : r(r), a(a) {}  //!< assignment constructor
251  Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {}
252  ~Line () {}
[4578]253
[2043]254  float distance (const Line& l) const;
[3228]255  float distancePoint (const Vector& v) const;
[4578]256  float distancePoint (const sVec3D& v) const;
[2043]257  Vector* footpoints (const Line& l) const;
258  float len () const;
[4578]259
[2043]260  void rotate(const Rotation& rot);
261};
262
263//! 3D plane
264/**
265  Class to handle planes in 3-dimensional space
[4578]266
[2043]267  Critical for polygon-based collision detection
268*/
269class Plane
270{
271  public:
[4578]272
[2043]273  Vector n;   //!< Normal vector
274  float k;    //!< Offset constant
[4578]275
[5688]276  Plane (const Vector& a, const Vector& b, const Vector& c);
277  Plane (const Vector& norm, const Vector& p);
278  Plane (const Vector& norm, const sVec3D& p);
279  Plane (const Vector& n, float k) : n(n), k(k) {} //!< assignment constructor
[2043]280  Plane () : n(Vector(1,1,1)), k(0) {}
281  ~Plane () {}
[4578]282
[3228]283  Vector intersectLine (const Line& l) const;
284  float distancePoint (const Vector& p) const;
[4585]285  float distancePoint (const sVec3D& p) const;
[3228]286  float locatePoint (const Vector& p) const;
[2043]287};
288
[4845]289
290
291//! A class that represents a rectangle, this is needed for SpatialSeparation
292class Rectangle
293{
294
295  public:
[5215]296    Rectangle() { this->center = Vector(); }
297    Rectangle(const Vector &center, float len) { this->center = Vector(center.x, center.y, center.z); this->axis[0] = len; this->axis[1] = len; }
[4845]298    virtual ~Rectangle() {}
299
300    /** \brief sets the center of the rectangle to a defined vector @param center the new center */
[5215]301   inline void setCenter(const Vector &center) { this->center = center;}
[4845]302    /** \brief sets the center of the rectangle to a defined vector @param x coord of the center @param y coord of the center @param z coord of the center */
[5215]303   inline void setCenter(float x, float y, float z) { this->center.x = x; this->center.y = y; this->center.z = z; }
[4845]304   /** \brief returns the center of the rectangle to a defined vector @returns center the new center */
[5215]305   inline const Vector& getCenter() const { return this->center; }
[4845]306
307   /** \brief sets both axis of the rectangle to a defined vector @param unityLength the new center */
308   inline void setAxis(float unityLength) { this->axis[0] = unityLength; this->axis[1] = unityLength; }
309   /** \brief sets both axis of the rectangle to a defined vector @param v1 the length of the x axis @param v2 the length of the z axis*/
310   inline void setAxis(float v1, float v2) { this->axis[0] = v1; this->axis[1] = v2; }
[4853]311   /** \brief gets one axis length of the rectangle  @returns the length of the axis 0 */
312   inline float getAxis() { return this-> axis[0]; }
[4845]313
314  private:
[5215]315    Vector          center;
[4851]316    float           axis[2];
[4845]317};
[4851]318
319
[3224]320#endif /* _VECTOR_H */
[4997]321
Note: See TracBrowser for help on using the repository browser.