[5789] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | |
---|
| 30 | #include "OgreMath.h" |
---|
| 31 | #include "asm_math.h" |
---|
| 32 | #include "OgreVector2.h" |
---|
| 33 | #include "OgreVector3.h" |
---|
| 34 | #include "OgreVector4.h" |
---|
| 35 | #include "OgreMatrix4.h" |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | namespace Ogre |
---|
| 39 | { |
---|
| 40 | |
---|
| 41 | const Real Math::POS_INFINITY = std::numeric_limits<Real>::infinity(); |
---|
| 42 | const Real Math::NEG_INFINITY = -std::numeric_limits<Real>::infinity(); |
---|
| 43 | const Real Math::PI = Real( 4.0 * atan( 1.0 ) ); |
---|
| 44 | const Real Math::TWO_PI = Real( 2.0 * PI ); |
---|
| 45 | const Real Math::HALF_PI = Real( 0.5 * PI ); |
---|
| 46 | const Real Math::fDeg2Rad = PI / Real(180.0); |
---|
| 47 | const Real Math::fRad2Deg = Real(180.0) / PI; |
---|
| 48 | |
---|
| 49 | int Math::mTrigTableSize; |
---|
| 50 | Math::AngleUnit Math::msAngleUnit; |
---|
| 51 | |
---|
| 52 | Real Math::mTrigTableFactor; |
---|
| 53 | Real *Math::mSinTable = NULL; |
---|
| 54 | Real *Math::mTanTable = NULL; |
---|
| 55 | |
---|
| 56 | //----------------------------------------------------------------------- |
---|
| 57 | Math::Math( unsigned int trigTableSize ) |
---|
| 58 | { |
---|
| 59 | msAngleUnit = AU_DEGREE; |
---|
| 60 | |
---|
| 61 | mTrigTableSize = trigTableSize; |
---|
| 62 | mTrigTableFactor = mTrigTableSize / Math::TWO_PI; |
---|
| 63 | |
---|
| 64 | mSinTable = static_cast<Real*>(malloc(mTrigTableSize * sizeof(Real))); |
---|
| 65 | mTanTable = static_cast<Real*>(malloc(mTrigTableSize * sizeof(Real))); |
---|
| 66 | |
---|
| 67 | buildTrigTables(); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | //----------------------------------------------------------------------- |
---|
| 71 | Math::~Math() |
---|
| 72 | { |
---|
| 73 | free(mSinTable); |
---|
| 74 | free(mTanTable); |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | //----------------------------------------------------------------------- |
---|
| 78 | void Math::buildTrigTables(void) |
---|
| 79 | { |
---|
| 80 | // Build trig lookup tables |
---|
| 81 | // Could get away with building only PI sized Sin table but simpler this |
---|
| 82 | // way. Who cares, it'll ony use an extra 8k of memory anyway and I like |
---|
| 83 | // simplicity. |
---|
| 84 | Real angle; |
---|
| 85 | for (int i = 0; i < mTrigTableSize; ++i) |
---|
| 86 | { |
---|
| 87 | angle = Math::TWO_PI * i / mTrigTableSize; |
---|
| 88 | mSinTable[i] = sin(angle); |
---|
| 89 | mTanTable[i] = tan(angle); |
---|
| 90 | } |
---|
| 91 | } |
---|
| 92 | //----------------------------------------------------------------------- |
---|
| 93 | Real Math::SinTable (Real fValue) |
---|
| 94 | { |
---|
| 95 | // Convert range to index values, wrap if required |
---|
| 96 | int idx; |
---|
| 97 | if (fValue >= 0) |
---|
| 98 | { |
---|
| 99 | idx = int(fValue * mTrigTableFactor) % mTrigTableSize; |
---|
| 100 | } |
---|
| 101 | else |
---|
| 102 | { |
---|
| 103 | idx = mTrigTableSize - (int(-fValue * mTrigTableFactor) % mTrigTableSize) - 1; |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | return mSinTable[idx]; |
---|
| 107 | } |
---|
| 108 | //----------------------------------------------------------------------- |
---|
| 109 | Real Math::TanTable (Real fValue) |
---|
| 110 | { |
---|
| 111 | // Convert range to index values, wrap if required |
---|
| 112 | int idx = int(fValue *= mTrigTableFactor) % mTrigTableSize; |
---|
| 113 | return mTanTable[idx]; |
---|
| 114 | } |
---|
| 115 | //----------------------------------------------------------------------- |
---|
| 116 | int Math::ISign (int iValue) |
---|
| 117 | { |
---|
| 118 | return ( iValue > 0 ? +1 : ( iValue < 0 ? -1 : 0 ) ); |
---|
| 119 | } |
---|
| 120 | //----------------------------------------------------------------------- |
---|
| 121 | Radian Math::ACos (Real fValue) |
---|
| 122 | { |
---|
| 123 | if ( -1.0 < fValue ) |
---|
| 124 | { |
---|
| 125 | if ( fValue < 1.0 ) |
---|
| 126 | return Radian(acos(fValue)); |
---|
| 127 | else |
---|
| 128 | return Radian(0.0); |
---|
| 129 | } |
---|
| 130 | else |
---|
| 131 | { |
---|
| 132 | return Radian(PI); |
---|
| 133 | } |
---|
| 134 | } |
---|
| 135 | //----------------------------------------------------------------------- |
---|
| 136 | Radian Math::ASin (Real fValue) |
---|
| 137 | { |
---|
| 138 | if ( -1.0 < fValue ) |
---|
| 139 | { |
---|
| 140 | if ( fValue < 1.0 ) |
---|
| 141 | return Radian(asin(fValue)); |
---|
| 142 | else |
---|
| 143 | return Radian(HALF_PI); |
---|
| 144 | } |
---|
| 145 | else |
---|
| 146 | { |
---|
| 147 | return Radian(-HALF_PI); |
---|
| 148 | } |
---|
| 149 | } |
---|
| 150 | //----------------------------------------------------------------------- |
---|
| 151 | Real Math::Sign (Real fValue) |
---|
| 152 | { |
---|
| 153 | if ( fValue > 0.0 ) |
---|
| 154 | return 1.0; |
---|
| 155 | |
---|
| 156 | if ( fValue < 0.0 ) |
---|
| 157 | return -1.0; |
---|
| 158 | |
---|
| 159 | return 0.0; |
---|
| 160 | } |
---|
| 161 | //----------------------------------------------------------------------- |
---|
| 162 | Real Math::InvSqrt(Real fValue) |
---|
| 163 | { |
---|
| 164 | return Real(asm_rsq(fValue)); |
---|
| 165 | } |
---|
| 166 | //----------------------------------------------------------------------- |
---|
| 167 | Real Math::UnitRandom () |
---|
| 168 | { |
---|
| 169 | return asm_rand() / asm_rand_max(); |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | //----------------------------------------------------------------------- |
---|
| 173 | Real Math::RangeRandom (Real fLow, Real fHigh) |
---|
| 174 | { |
---|
| 175 | return (fHigh-fLow)*UnitRandom() + fLow; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | //----------------------------------------------------------------------- |
---|
| 179 | Real Math::SymmetricRandom () |
---|
| 180 | { |
---|
| 181 | return 2.0f * UnitRandom() - 1.0f; |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | //----------------------------------------------------------------------- |
---|
| 185 | void Math::setAngleUnit(Math::AngleUnit unit) |
---|
| 186 | { |
---|
| 187 | msAngleUnit = unit; |
---|
| 188 | } |
---|
| 189 | //----------------------------------------------------------------------- |
---|
| 190 | Math::AngleUnit Math::getAngleUnit(void) |
---|
| 191 | { |
---|
| 192 | return msAngleUnit; |
---|
| 193 | } |
---|
| 194 | //----------------------------------------------------------------------- |
---|
| 195 | Real Math::AngleUnitsToRadians(Real angleunits) |
---|
| 196 | { |
---|
| 197 | if (msAngleUnit == AU_DEGREE) |
---|
| 198 | return angleunits * fDeg2Rad; |
---|
| 199 | else |
---|
| 200 | return angleunits; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | //----------------------------------------------------------------------- |
---|
| 204 | Real Math::RadiansToAngleUnits(Real radians) |
---|
| 205 | { |
---|
| 206 | if (msAngleUnit == AU_DEGREE) |
---|
| 207 | return radians * fRad2Deg; |
---|
| 208 | else |
---|
| 209 | return radians; |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | //----------------------------------------------------------------------- |
---|
| 213 | Real Math::AngleUnitsToDegrees(Real angleunits) |
---|
| 214 | { |
---|
| 215 | if (msAngleUnit == AU_RADIAN) |
---|
| 216 | return angleunits * fRad2Deg; |
---|
| 217 | else |
---|
| 218 | return angleunits; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | //----------------------------------------------------------------------- |
---|
| 222 | Real Math::DegreesToAngleUnits(Real degrees) |
---|
| 223 | { |
---|
| 224 | if (msAngleUnit == AU_RADIAN) |
---|
| 225 | return degrees * fDeg2Rad; |
---|
| 226 | else |
---|
| 227 | return degrees; |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | //----------------------------------------------------------------------- |
---|
| 231 | bool Math::pointInTri2D(const Vector2& p, const Vector2& a, |
---|
| 232 | const Vector2& b, const Vector2& c) |
---|
| 233 | { |
---|
| 234 | // Winding must be consistent from all edges for point to be inside |
---|
| 235 | Vector2 v1, v2; |
---|
| 236 | Real dot[3]; |
---|
| 237 | bool zeroDot[3]; |
---|
| 238 | |
---|
| 239 | v1 = b - a; |
---|
| 240 | v2 = p - a; |
---|
| 241 | |
---|
| 242 | // Note we don't care about normalisation here since sign is all we need |
---|
| 243 | // It means we don't have to worry about magnitude of cross products either |
---|
| 244 | dot[0] = v1.crossProduct(v2); |
---|
| 245 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3); |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | v1 = c - b; |
---|
| 249 | v2 = p - b; |
---|
| 250 | |
---|
| 251 | dot[1] = v1.crossProduct(v2); |
---|
| 252 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3); |
---|
| 253 | |
---|
| 254 | // Compare signs (ignore colinear / coincident points) |
---|
| 255 | if(!zeroDot[0] && !zeroDot[1] |
---|
| 256 | && Math::Sign(dot[0]) != Math::Sign(dot[1])) |
---|
| 257 | { |
---|
| 258 | return false; |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | v1 = a - c; |
---|
| 262 | v2 = p - c; |
---|
| 263 | |
---|
| 264 | dot[2] = v1.crossProduct(v2); |
---|
| 265 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3); |
---|
| 266 | // Compare signs (ignore colinear / coincident points) |
---|
| 267 | if((!zeroDot[0] && !zeroDot[2] |
---|
| 268 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) || |
---|
| 269 | (!zeroDot[1] && !zeroDot[2] |
---|
| 270 | && Math::Sign(dot[1]) != Math::Sign(dot[2]))) |
---|
| 271 | { |
---|
| 272 | return false; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | return true; |
---|
| 277 | } |
---|
| 278 | //----------------------------------------------------------------------- |
---|
| 279 | bool Math::pointInTri3D(const Vector3& p, const Vector3& a, |
---|
| 280 | const Vector3& b, const Vector3& c, const Vector3& normal) |
---|
| 281 | { |
---|
| 282 | // Winding must be consistent from all edges for point to be inside |
---|
| 283 | Vector3 v1, v2; |
---|
| 284 | Real dot[3]; |
---|
| 285 | bool zeroDot[3]; |
---|
| 286 | |
---|
| 287 | v1 = b - a; |
---|
| 288 | v2 = p - a; |
---|
| 289 | |
---|
| 290 | // Note we don't care about normalisation here since sign is all we need |
---|
| 291 | // It means we don't have to worry about magnitude of cross products either |
---|
| 292 | dot[0] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 293 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3); |
---|
| 294 | |
---|
| 295 | |
---|
| 296 | v1 = c - b; |
---|
| 297 | v2 = p - b; |
---|
| 298 | |
---|
| 299 | dot[1] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 300 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3); |
---|
| 301 | |
---|
| 302 | // Compare signs (ignore colinear / coincident points) |
---|
| 303 | if(!zeroDot[0] && !zeroDot[1] |
---|
| 304 | && Math::Sign(dot[0]) != Math::Sign(dot[1])) |
---|
| 305 | { |
---|
| 306 | return false; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | v1 = a - c; |
---|
| 310 | v2 = p - c; |
---|
| 311 | |
---|
| 312 | dot[2] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 313 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3); |
---|
| 314 | // Compare signs (ignore colinear / coincident points) |
---|
| 315 | if((!zeroDot[0] && !zeroDot[2] |
---|
| 316 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) || |
---|
| 317 | (!zeroDot[1] && !zeroDot[2] |
---|
| 318 | && Math::Sign(dot[1]) != Math::Sign(dot[2]))) |
---|
| 319 | { |
---|
| 320 | return false; |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | return true; |
---|
| 325 | } |
---|
| 326 | //----------------------------------------------------------------------- |
---|
| 327 | bool Math::RealEqual( Real a, Real b, Real tolerance ) |
---|
| 328 | { |
---|
| 329 | if (fabs(b-a) <= tolerance) |
---|
| 330 | return true; |
---|
| 331 | else |
---|
| 332 | return false; |
---|
| 333 | } |
---|
| 334 | //----------------------------------------------------------------------- |
---|
| 335 | Vector3 Math::calculateTangentSpaceVector( |
---|
| 336 | const Vector3& position1, const Vector3& position2, const Vector3& position3, |
---|
| 337 | Real u1, Real v1, Real u2, Real v2, Real u3, Real v3) |
---|
| 338 | { |
---|
| 339 | //side0 is the vector along one side of the triangle of vertices passed in, |
---|
| 340 | //and side1 is the vector along another side. Taking the cross product of these returns the normal. |
---|
| 341 | Vector3 side0 = position1 - position2; |
---|
| 342 | Vector3 side1 = position3 - position1; |
---|
| 343 | //Calculate face normal |
---|
| 344 | Vector3 normal = side1.crossProduct(side0); |
---|
| 345 | normal.normalise(); |
---|
| 346 | //Now we use a formula to calculate the tangent. |
---|
| 347 | Real deltaV0 = v1 - v2; |
---|
| 348 | Real deltaV1 = v3 - v1; |
---|
| 349 | Vector3 tangent = deltaV1 * side0 - deltaV0 * side1; |
---|
| 350 | tangent.normalise(); |
---|
| 351 | //Calculate binormal |
---|
| 352 | Real deltaU0 = u1 - u2; |
---|
| 353 | Real deltaU1 = u3 - u1; |
---|
| 354 | Vector3 binormal = deltaU1 * side0 - deltaU0 * side1; |
---|
| 355 | binormal.normalise(); |
---|
| 356 | //Now, we take the cross product of the tangents to get a vector which |
---|
| 357 | //should point in the same direction as our normal calculated above. |
---|
| 358 | //If it points in the opposite direction (the dot product between the normals is less than zero), |
---|
| 359 | //then we need to reverse the s and t tangents. |
---|
| 360 | //This is because the triangle has been mirrored when going from tangent space to object space. |
---|
| 361 | //reverse tangents if necessary |
---|
| 362 | Vector3 tangentCross = tangent.crossProduct(binormal); |
---|
| 363 | if (tangentCross.dotProduct(normal) < 0.0f) |
---|
| 364 | { |
---|
| 365 | tangent = -tangent; |
---|
| 366 | binormal = -binormal; |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | return tangent; |
---|
| 370 | |
---|
| 371 | } |
---|
| 372 | //----------------------------------------------------------------------- |
---|
| 373 | Vector4 Math::calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 374 | { |
---|
| 375 | Vector3 normal = calculateBasicFaceNormal(v1, v2, v3); |
---|
| 376 | // Now set up the w (distance of tri from origin |
---|
| 377 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1))); |
---|
| 378 | } |
---|
| 379 | //----------------------------------------------------------------------- |
---|
| 380 | Vector3 Math::calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 381 | { |
---|
| 382 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1); |
---|
| 383 | normal.normalise(); |
---|
| 384 | return normal; |
---|
| 385 | } |
---|
| 386 | //----------------------------------------------------------------------- |
---|
| 387 | Vector4 Math::calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 388 | { |
---|
| 389 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(v1, v2, v3); |
---|
| 390 | // Now set up the w (distance of tri from origin) |
---|
| 391 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1))); |
---|
| 392 | } |
---|
| 393 | //----------------------------------------------------------------------- |
---|
| 394 | Vector3 Math::calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 395 | { |
---|
| 396 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1); |
---|
| 397 | return normal; |
---|
| 398 | } |
---|
| 399 | //----------------------------------------------------------------------- |
---|
| 400 | Real Math::gaussianDistribution(Real x, Real offset, Real scale) |
---|
| 401 | { |
---|
| 402 | Real nom = Math::Exp( |
---|
| 403 | -Math::Sqr(x - offset) / (2 * Math::Sqr(scale))); |
---|
| 404 | Real denom = scale * Math::Sqrt(2 * Math::PI); |
---|
| 405 | |
---|
| 406 | return nom / denom; |
---|
| 407 | |
---|
| 408 | } |
---|
| 409 | //--------------------------------------------------------------------- |
---|
| 410 | Matrix4 Math::makeViewMatrix(const Vector3& position, const Quaternion& orientation, |
---|
| 411 | const Matrix4* reflectMatrix) |
---|
| 412 | { |
---|
| 413 | Matrix4 viewMatrix; |
---|
| 414 | |
---|
| 415 | // View matrix is: |
---|
| 416 | // |
---|
| 417 | // [ Lx Uy Dz Tx ] |
---|
| 418 | // [ Lx Uy Dz Ty ] |
---|
| 419 | // [ Lx Uy Dz Tz ] |
---|
| 420 | // [ 0 0 0 1 ] |
---|
| 421 | // |
---|
| 422 | // Where T = -(Transposed(Rot) * Pos) |
---|
| 423 | |
---|
| 424 | // This is most efficiently done using 3x3 Matrices |
---|
| 425 | Matrix3 rot; |
---|
| 426 | orientation.ToRotationMatrix(rot); |
---|
| 427 | |
---|
| 428 | // Make the translation relative to new axes |
---|
| 429 | Matrix3 rotT = rot.Transpose(); |
---|
| 430 | Vector3 trans = -rotT * position; |
---|
| 431 | |
---|
| 432 | // Make final matrix |
---|
| 433 | viewMatrix = Matrix4::IDENTITY; |
---|
| 434 | viewMatrix = rotT; // fills upper 3x3 |
---|
| 435 | viewMatrix[0][3] = trans.x; |
---|
| 436 | viewMatrix[1][3] = trans.y; |
---|
| 437 | viewMatrix[2][3] = trans.z; |
---|
| 438 | |
---|
| 439 | // Deal with reflections |
---|
| 440 | if (reflectMatrix) |
---|
| 441 | { |
---|
| 442 | viewMatrix = viewMatrix * (*reflectMatrix); |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | return viewMatrix; |
---|
| 446 | |
---|
| 447 | } |
---|
| 448 | |
---|
| 449 | } |
---|