1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #include "OgreMatrix3.h" |
---|
30 | |
---|
31 | #include "OgreMath.h" |
---|
32 | |
---|
33 | // Adapted from Matrix math by Wild Magic http://www.geometrictools.com/ |
---|
34 | |
---|
35 | namespace Ogre |
---|
36 | { |
---|
37 | const Real Matrix3::EPSILON = 1e-06; |
---|
38 | const Matrix3 Matrix3::ZERO(0,0,0,0,0,0,0,0,0); |
---|
39 | const Matrix3 Matrix3::IDENTITY(1,0,0,0,1,0,0,0,1); |
---|
40 | const Real Matrix3::ms_fSvdEpsilon = 1e-04; |
---|
41 | const unsigned int Matrix3::ms_iSvdMaxIterations = 32; |
---|
42 | |
---|
43 | //----------------------------------------------------------------------- |
---|
44 | Vector3 Matrix3::GetColumn (size_t iCol) const |
---|
45 | { |
---|
46 | assert( 0 <= iCol && iCol < 3 ); |
---|
47 | return Vector3(m[0][iCol],m[1][iCol], |
---|
48 | m[2][iCol]); |
---|
49 | } |
---|
50 | //----------------------------------------------------------------------- |
---|
51 | void Matrix3::SetColumn(size_t iCol, const Vector3& vec) |
---|
52 | { |
---|
53 | assert( 0 <= iCol && iCol < 3 ); |
---|
54 | m[0][iCol] = vec.x; |
---|
55 | m[1][iCol] = vec.y; |
---|
56 | m[2][iCol] = vec.z; |
---|
57 | |
---|
58 | } |
---|
59 | //----------------------------------------------------------------------- |
---|
60 | void Matrix3::FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis) |
---|
61 | { |
---|
62 | SetColumn(0,xAxis); |
---|
63 | SetColumn(1,yAxis); |
---|
64 | SetColumn(2,zAxis); |
---|
65 | |
---|
66 | } |
---|
67 | |
---|
68 | //----------------------------------------------------------------------- |
---|
69 | bool Matrix3::operator== (const Matrix3& rkMatrix) const |
---|
70 | { |
---|
71 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
72 | { |
---|
73 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
74 | { |
---|
75 | if ( m[iRow][iCol] != rkMatrix.m[iRow][iCol] ) |
---|
76 | return false; |
---|
77 | } |
---|
78 | } |
---|
79 | |
---|
80 | return true; |
---|
81 | } |
---|
82 | //----------------------------------------------------------------------- |
---|
83 | Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const |
---|
84 | { |
---|
85 | Matrix3 kSum; |
---|
86 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
87 | { |
---|
88 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
89 | { |
---|
90 | kSum.m[iRow][iCol] = m[iRow][iCol] + |
---|
91 | rkMatrix.m[iRow][iCol]; |
---|
92 | } |
---|
93 | } |
---|
94 | return kSum; |
---|
95 | } |
---|
96 | //----------------------------------------------------------------------- |
---|
97 | Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const |
---|
98 | { |
---|
99 | Matrix3 kDiff; |
---|
100 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
101 | { |
---|
102 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
103 | { |
---|
104 | kDiff.m[iRow][iCol] = m[iRow][iCol] - |
---|
105 | rkMatrix.m[iRow][iCol]; |
---|
106 | } |
---|
107 | } |
---|
108 | return kDiff; |
---|
109 | } |
---|
110 | //----------------------------------------------------------------------- |
---|
111 | Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const |
---|
112 | { |
---|
113 | Matrix3 kProd; |
---|
114 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
115 | { |
---|
116 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
117 | { |
---|
118 | kProd.m[iRow][iCol] = |
---|
119 | m[iRow][0]*rkMatrix.m[0][iCol] + |
---|
120 | m[iRow][1]*rkMatrix.m[1][iCol] + |
---|
121 | m[iRow][2]*rkMatrix.m[2][iCol]; |
---|
122 | } |
---|
123 | } |
---|
124 | return kProd; |
---|
125 | } |
---|
126 | //----------------------------------------------------------------------- |
---|
127 | Vector3 Matrix3::operator* (const Vector3& rkPoint) const |
---|
128 | { |
---|
129 | Vector3 kProd; |
---|
130 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
131 | { |
---|
132 | kProd[iRow] = |
---|
133 | m[iRow][0]*rkPoint[0] + |
---|
134 | m[iRow][1]*rkPoint[1] + |
---|
135 | m[iRow][2]*rkPoint[2]; |
---|
136 | } |
---|
137 | return kProd; |
---|
138 | } |
---|
139 | //----------------------------------------------------------------------- |
---|
140 | Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix) |
---|
141 | { |
---|
142 | Vector3 kProd; |
---|
143 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
144 | { |
---|
145 | kProd[iRow] = |
---|
146 | rkPoint[0]*rkMatrix.m[0][iRow] + |
---|
147 | rkPoint[1]*rkMatrix.m[1][iRow] + |
---|
148 | rkPoint[2]*rkMatrix.m[2][iRow]; |
---|
149 | } |
---|
150 | return kProd; |
---|
151 | } |
---|
152 | //----------------------------------------------------------------------- |
---|
153 | Matrix3 Matrix3::operator- () const |
---|
154 | { |
---|
155 | Matrix3 kNeg; |
---|
156 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
157 | { |
---|
158 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
159 | kNeg[iRow][iCol] = -m[iRow][iCol]; |
---|
160 | } |
---|
161 | return kNeg; |
---|
162 | } |
---|
163 | //----------------------------------------------------------------------- |
---|
164 | Matrix3 Matrix3::operator* (Real fScalar) const |
---|
165 | { |
---|
166 | Matrix3 kProd; |
---|
167 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
168 | { |
---|
169 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
170 | kProd[iRow][iCol] = fScalar*m[iRow][iCol]; |
---|
171 | } |
---|
172 | return kProd; |
---|
173 | } |
---|
174 | //----------------------------------------------------------------------- |
---|
175 | Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix) |
---|
176 | { |
---|
177 | Matrix3 kProd; |
---|
178 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
179 | { |
---|
180 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
181 | kProd[iRow][iCol] = fScalar*rkMatrix.m[iRow][iCol]; |
---|
182 | } |
---|
183 | return kProd; |
---|
184 | } |
---|
185 | //----------------------------------------------------------------------- |
---|
186 | Matrix3 Matrix3::Transpose () const |
---|
187 | { |
---|
188 | Matrix3 kTranspose; |
---|
189 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
190 | { |
---|
191 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
192 | kTranspose[iRow][iCol] = m[iCol][iRow]; |
---|
193 | } |
---|
194 | return kTranspose; |
---|
195 | } |
---|
196 | //----------------------------------------------------------------------- |
---|
197 | bool Matrix3::Inverse (Matrix3& rkInverse, Real fTolerance) const |
---|
198 | { |
---|
199 | // Invert a 3x3 using cofactors. This is about 8 times faster than |
---|
200 | // the Numerical Recipes code which uses Gaussian elimination. |
---|
201 | |
---|
202 | rkInverse[0][0] = m[1][1]*m[2][2] - |
---|
203 | m[1][2]*m[2][1]; |
---|
204 | rkInverse[0][1] = m[0][2]*m[2][1] - |
---|
205 | m[0][1]*m[2][2]; |
---|
206 | rkInverse[0][2] = m[0][1]*m[1][2] - |
---|
207 | m[0][2]*m[1][1]; |
---|
208 | rkInverse[1][0] = m[1][2]*m[2][0] - |
---|
209 | m[1][0]*m[2][2]; |
---|
210 | rkInverse[1][1] = m[0][0]*m[2][2] - |
---|
211 | m[0][2]*m[2][0]; |
---|
212 | rkInverse[1][2] = m[0][2]*m[1][0] - |
---|
213 | m[0][0]*m[1][2]; |
---|
214 | rkInverse[2][0] = m[1][0]*m[2][1] - |
---|
215 | m[1][1]*m[2][0]; |
---|
216 | rkInverse[2][1] = m[0][1]*m[2][0] - |
---|
217 | m[0][0]*m[2][1]; |
---|
218 | rkInverse[2][2] = m[0][0]*m[1][1] - |
---|
219 | m[0][1]*m[1][0]; |
---|
220 | |
---|
221 | Real fDet = |
---|
222 | m[0][0]*rkInverse[0][0] + |
---|
223 | m[0][1]*rkInverse[1][0]+ |
---|
224 | m[0][2]*rkInverse[2][0]; |
---|
225 | |
---|
226 | if ( Math::Abs(fDet) <= fTolerance ) |
---|
227 | return false; |
---|
228 | |
---|
229 | Real fInvDet = 1.0/fDet; |
---|
230 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
231 | { |
---|
232 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
233 | rkInverse[iRow][iCol] *= fInvDet; |
---|
234 | } |
---|
235 | |
---|
236 | return true; |
---|
237 | } |
---|
238 | //----------------------------------------------------------------------- |
---|
239 | Matrix3 Matrix3::Inverse (Real fTolerance) const |
---|
240 | { |
---|
241 | Matrix3 kInverse = Matrix3::ZERO; |
---|
242 | Inverse(kInverse,fTolerance); |
---|
243 | return kInverse; |
---|
244 | } |
---|
245 | //----------------------------------------------------------------------- |
---|
246 | Real Matrix3::Determinant () const |
---|
247 | { |
---|
248 | Real fCofactor00 = m[1][1]*m[2][2] - |
---|
249 | m[1][2]*m[2][1]; |
---|
250 | Real fCofactor10 = m[1][2]*m[2][0] - |
---|
251 | m[1][0]*m[2][2]; |
---|
252 | Real fCofactor20 = m[1][0]*m[2][1] - |
---|
253 | m[1][1]*m[2][0]; |
---|
254 | |
---|
255 | Real fDet = |
---|
256 | m[0][0]*fCofactor00 + |
---|
257 | m[0][1]*fCofactor10 + |
---|
258 | m[0][2]*fCofactor20; |
---|
259 | |
---|
260 | return fDet; |
---|
261 | } |
---|
262 | //----------------------------------------------------------------------- |
---|
263 | void Matrix3::Bidiagonalize (Matrix3& kA, Matrix3& kL, |
---|
264 | Matrix3& kR) |
---|
265 | { |
---|
266 | Real afV[3], afW[3]; |
---|
267 | Real fLength, fSign, fT1, fInvT1, fT2; |
---|
268 | bool bIdentity; |
---|
269 | |
---|
270 | // map first column to (*,0,0) |
---|
271 | fLength = Math::Sqrt(kA[0][0]*kA[0][0] + kA[1][0]*kA[1][0] + |
---|
272 | kA[2][0]*kA[2][0]); |
---|
273 | if ( fLength > 0.0 ) |
---|
274 | { |
---|
275 | fSign = (kA[0][0] > 0.0 ? 1.0 : -1.0); |
---|
276 | fT1 = kA[0][0] + fSign*fLength; |
---|
277 | fInvT1 = 1.0/fT1; |
---|
278 | afV[1] = kA[1][0]*fInvT1; |
---|
279 | afV[2] = kA[2][0]*fInvT1; |
---|
280 | |
---|
281 | fT2 = -2.0/(1.0+afV[1]*afV[1]+afV[2]*afV[2]); |
---|
282 | afW[0] = fT2*(kA[0][0]+kA[1][0]*afV[1]+kA[2][0]*afV[2]); |
---|
283 | afW[1] = fT2*(kA[0][1]+kA[1][1]*afV[1]+kA[2][1]*afV[2]); |
---|
284 | afW[2] = fT2*(kA[0][2]+kA[1][2]*afV[1]+kA[2][2]*afV[2]); |
---|
285 | kA[0][0] += afW[0]; |
---|
286 | kA[0][1] += afW[1]; |
---|
287 | kA[0][2] += afW[2]; |
---|
288 | kA[1][1] += afV[1]*afW[1]; |
---|
289 | kA[1][2] += afV[1]*afW[2]; |
---|
290 | kA[2][1] += afV[2]*afW[1]; |
---|
291 | kA[2][2] += afV[2]*afW[2]; |
---|
292 | |
---|
293 | kL[0][0] = 1.0+fT2; |
---|
294 | kL[0][1] = kL[1][0] = fT2*afV[1]; |
---|
295 | kL[0][2] = kL[2][0] = fT2*afV[2]; |
---|
296 | kL[1][1] = 1.0+fT2*afV[1]*afV[1]; |
---|
297 | kL[1][2] = kL[2][1] = fT2*afV[1]*afV[2]; |
---|
298 | kL[2][2] = 1.0+fT2*afV[2]*afV[2]; |
---|
299 | bIdentity = false; |
---|
300 | } |
---|
301 | else |
---|
302 | { |
---|
303 | kL = Matrix3::IDENTITY; |
---|
304 | bIdentity = true; |
---|
305 | } |
---|
306 | |
---|
307 | // map first row to (*,*,0) |
---|
308 | fLength = Math::Sqrt(kA[0][1]*kA[0][1]+kA[0][2]*kA[0][2]); |
---|
309 | if ( fLength > 0.0 ) |
---|
310 | { |
---|
311 | fSign = (kA[0][1] > 0.0 ? 1.0 : -1.0); |
---|
312 | fT1 = kA[0][1] + fSign*fLength; |
---|
313 | afV[2] = kA[0][2]/fT1; |
---|
314 | |
---|
315 | fT2 = -2.0/(1.0+afV[2]*afV[2]); |
---|
316 | afW[0] = fT2*(kA[0][1]+kA[0][2]*afV[2]); |
---|
317 | afW[1] = fT2*(kA[1][1]+kA[1][2]*afV[2]); |
---|
318 | afW[2] = fT2*(kA[2][1]+kA[2][2]*afV[2]); |
---|
319 | kA[0][1] += afW[0]; |
---|
320 | kA[1][1] += afW[1]; |
---|
321 | kA[1][2] += afW[1]*afV[2]; |
---|
322 | kA[2][1] += afW[2]; |
---|
323 | kA[2][2] += afW[2]*afV[2]; |
---|
324 | |
---|
325 | kR[0][0] = 1.0; |
---|
326 | kR[0][1] = kR[1][0] = 0.0; |
---|
327 | kR[0][2] = kR[2][0] = 0.0; |
---|
328 | kR[1][1] = 1.0+fT2; |
---|
329 | kR[1][2] = kR[2][1] = fT2*afV[2]; |
---|
330 | kR[2][2] = 1.0+fT2*afV[2]*afV[2]; |
---|
331 | } |
---|
332 | else |
---|
333 | { |
---|
334 | kR = Matrix3::IDENTITY; |
---|
335 | } |
---|
336 | |
---|
337 | // map second column to (*,*,0) |
---|
338 | fLength = Math::Sqrt(kA[1][1]*kA[1][1]+kA[2][1]*kA[2][1]); |
---|
339 | if ( fLength > 0.0 ) |
---|
340 | { |
---|
341 | fSign = (kA[1][1] > 0.0 ? 1.0 : -1.0); |
---|
342 | fT1 = kA[1][1] + fSign*fLength; |
---|
343 | afV[2] = kA[2][1]/fT1; |
---|
344 | |
---|
345 | fT2 = -2.0/(1.0+afV[2]*afV[2]); |
---|
346 | afW[1] = fT2*(kA[1][1]+kA[2][1]*afV[2]); |
---|
347 | afW[2] = fT2*(kA[1][2]+kA[2][2]*afV[2]); |
---|
348 | kA[1][1] += afW[1]; |
---|
349 | kA[1][2] += afW[2]; |
---|
350 | kA[2][2] += afV[2]*afW[2]; |
---|
351 | |
---|
352 | Real fA = 1.0+fT2; |
---|
353 | Real fB = fT2*afV[2]; |
---|
354 | Real fC = 1.0+fB*afV[2]; |
---|
355 | |
---|
356 | if ( bIdentity ) |
---|
357 | { |
---|
358 | kL[0][0] = 1.0; |
---|
359 | kL[0][1] = kL[1][0] = 0.0; |
---|
360 | kL[0][2] = kL[2][0] = 0.0; |
---|
361 | kL[1][1] = fA; |
---|
362 | kL[1][2] = kL[2][1] = fB; |
---|
363 | kL[2][2] = fC; |
---|
364 | } |
---|
365 | else |
---|
366 | { |
---|
367 | for (int iRow = 0; iRow < 3; iRow++) |
---|
368 | { |
---|
369 | Real fTmp0 = kL[iRow][1]; |
---|
370 | Real fTmp1 = kL[iRow][2]; |
---|
371 | kL[iRow][1] = fA*fTmp0+fB*fTmp1; |
---|
372 | kL[iRow][2] = fB*fTmp0+fC*fTmp1; |
---|
373 | } |
---|
374 | } |
---|
375 | } |
---|
376 | } |
---|
377 | //----------------------------------------------------------------------- |
---|
378 | void Matrix3::GolubKahanStep (Matrix3& kA, Matrix3& kL, |
---|
379 | Matrix3& kR) |
---|
380 | { |
---|
381 | Real fT11 = kA[0][1]*kA[0][1]+kA[1][1]*kA[1][1]; |
---|
382 | Real fT22 = kA[1][2]*kA[1][2]+kA[2][2]*kA[2][2]; |
---|
383 | Real fT12 = kA[1][1]*kA[1][2]; |
---|
384 | Real fTrace = fT11+fT22; |
---|
385 | Real fDiff = fT11-fT22; |
---|
386 | Real fDiscr = Math::Sqrt(fDiff*fDiff+4.0*fT12*fT12); |
---|
387 | Real fRoot1 = 0.5*(fTrace+fDiscr); |
---|
388 | Real fRoot2 = 0.5*(fTrace-fDiscr); |
---|
389 | |
---|
390 | // adjust right |
---|
391 | Real fY = kA[0][0] - (Math::Abs(fRoot1-fT22) <= |
---|
392 | Math::Abs(fRoot2-fT22) ? fRoot1 : fRoot2); |
---|
393 | Real fZ = kA[0][1]; |
---|
394 | Real fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); |
---|
395 | Real fSin = fZ*fInvLength; |
---|
396 | Real fCos = -fY*fInvLength; |
---|
397 | |
---|
398 | Real fTmp0 = kA[0][0]; |
---|
399 | Real fTmp1 = kA[0][1]; |
---|
400 | kA[0][0] = fCos*fTmp0-fSin*fTmp1; |
---|
401 | kA[0][1] = fSin*fTmp0+fCos*fTmp1; |
---|
402 | kA[1][0] = -fSin*kA[1][1]; |
---|
403 | kA[1][1] *= fCos; |
---|
404 | |
---|
405 | size_t iRow; |
---|
406 | for (iRow = 0; iRow < 3; iRow++) |
---|
407 | { |
---|
408 | fTmp0 = kR[0][iRow]; |
---|
409 | fTmp1 = kR[1][iRow]; |
---|
410 | kR[0][iRow] = fCos*fTmp0-fSin*fTmp1; |
---|
411 | kR[1][iRow] = fSin*fTmp0+fCos*fTmp1; |
---|
412 | } |
---|
413 | |
---|
414 | // adjust left |
---|
415 | fY = kA[0][0]; |
---|
416 | fZ = kA[1][0]; |
---|
417 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); |
---|
418 | fSin = fZ*fInvLength; |
---|
419 | fCos = -fY*fInvLength; |
---|
420 | |
---|
421 | kA[0][0] = fCos*kA[0][0]-fSin*kA[1][0]; |
---|
422 | fTmp0 = kA[0][1]; |
---|
423 | fTmp1 = kA[1][1]; |
---|
424 | kA[0][1] = fCos*fTmp0-fSin*fTmp1; |
---|
425 | kA[1][1] = fSin*fTmp0+fCos*fTmp1; |
---|
426 | kA[0][2] = -fSin*kA[1][2]; |
---|
427 | kA[1][2] *= fCos; |
---|
428 | |
---|
429 | size_t iCol; |
---|
430 | for (iCol = 0; iCol < 3; iCol++) |
---|
431 | { |
---|
432 | fTmp0 = kL[iCol][0]; |
---|
433 | fTmp1 = kL[iCol][1]; |
---|
434 | kL[iCol][0] = fCos*fTmp0-fSin*fTmp1; |
---|
435 | kL[iCol][1] = fSin*fTmp0+fCos*fTmp1; |
---|
436 | } |
---|
437 | |
---|
438 | // adjust right |
---|
439 | fY = kA[0][1]; |
---|
440 | fZ = kA[0][2]; |
---|
441 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); |
---|
442 | fSin = fZ*fInvLength; |
---|
443 | fCos = -fY*fInvLength; |
---|
444 | |
---|
445 | kA[0][1] = fCos*kA[0][1]-fSin*kA[0][2]; |
---|
446 | fTmp0 = kA[1][1]; |
---|
447 | fTmp1 = kA[1][2]; |
---|
448 | kA[1][1] = fCos*fTmp0-fSin*fTmp1; |
---|
449 | kA[1][2] = fSin*fTmp0+fCos*fTmp1; |
---|
450 | kA[2][1] = -fSin*kA[2][2]; |
---|
451 | kA[2][2] *= fCos; |
---|
452 | |
---|
453 | for (iRow = 0; iRow < 3; iRow++) |
---|
454 | { |
---|
455 | fTmp0 = kR[1][iRow]; |
---|
456 | fTmp1 = kR[2][iRow]; |
---|
457 | kR[1][iRow] = fCos*fTmp0-fSin*fTmp1; |
---|
458 | kR[2][iRow] = fSin*fTmp0+fCos*fTmp1; |
---|
459 | } |
---|
460 | |
---|
461 | // adjust left |
---|
462 | fY = kA[1][1]; |
---|
463 | fZ = kA[2][1]; |
---|
464 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); |
---|
465 | fSin = fZ*fInvLength; |
---|
466 | fCos = -fY*fInvLength; |
---|
467 | |
---|
468 | kA[1][1] = fCos*kA[1][1]-fSin*kA[2][1]; |
---|
469 | fTmp0 = kA[1][2]; |
---|
470 | fTmp1 = kA[2][2]; |
---|
471 | kA[1][2] = fCos*fTmp0-fSin*fTmp1; |
---|
472 | kA[2][2] = fSin*fTmp0+fCos*fTmp1; |
---|
473 | |
---|
474 | for (iCol = 0; iCol < 3; iCol++) |
---|
475 | { |
---|
476 | fTmp0 = kL[iCol][1]; |
---|
477 | fTmp1 = kL[iCol][2]; |
---|
478 | kL[iCol][1] = fCos*fTmp0-fSin*fTmp1; |
---|
479 | kL[iCol][2] = fSin*fTmp0+fCos*fTmp1; |
---|
480 | } |
---|
481 | } |
---|
482 | //----------------------------------------------------------------------- |
---|
483 | void Matrix3::SingularValueDecomposition (Matrix3& kL, Vector3& kS, |
---|
484 | Matrix3& kR) const |
---|
485 | { |
---|
486 | // temas: currently unused |
---|
487 | //const int iMax = 16; |
---|
488 | size_t iRow, iCol; |
---|
489 | |
---|
490 | Matrix3 kA = *this; |
---|
491 | Bidiagonalize(kA,kL,kR); |
---|
492 | |
---|
493 | for (unsigned int i = 0; i < ms_iSvdMaxIterations; i++) |
---|
494 | { |
---|
495 | Real fTmp, fTmp0, fTmp1; |
---|
496 | Real fSin0, fCos0, fTan0; |
---|
497 | Real fSin1, fCos1, fTan1; |
---|
498 | |
---|
499 | bool bTest1 = (Math::Abs(kA[0][1]) <= |
---|
500 | ms_fSvdEpsilon*(Math::Abs(kA[0][0])+Math::Abs(kA[1][1]))); |
---|
501 | bool bTest2 = (Math::Abs(kA[1][2]) <= |
---|
502 | ms_fSvdEpsilon*(Math::Abs(kA[1][1])+Math::Abs(kA[2][2]))); |
---|
503 | if ( bTest1 ) |
---|
504 | { |
---|
505 | if ( bTest2 ) |
---|
506 | { |
---|
507 | kS[0] = kA[0][0]; |
---|
508 | kS[1] = kA[1][1]; |
---|
509 | kS[2] = kA[2][2]; |
---|
510 | break; |
---|
511 | } |
---|
512 | else |
---|
513 | { |
---|
514 | // 2x2 closed form factorization |
---|
515 | fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] + |
---|
516 | kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]); |
---|
517 | fTan0 = 0.5*(fTmp+Math::Sqrt(fTmp*fTmp + 4.0)); |
---|
518 | fCos0 = Math::InvSqrt(1.0+fTan0*fTan0); |
---|
519 | fSin0 = fTan0*fCos0; |
---|
520 | |
---|
521 | for (iCol = 0; iCol < 3; iCol++) |
---|
522 | { |
---|
523 | fTmp0 = kL[iCol][1]; |
---|
524 | fTmp1 = kL[iCol][2]; |
---|
525 | kL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1; |
---|
526 | kL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1; |
---|
527 | } |
---|
528 | |
---|
529 | fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1]; |
---|
530 | fCos1 = Math::InvSqrt(1.0+fTan1*fTan1); |
---|
531 | fSin1 = -fTan1*fCos1; |
---|
532 | |
---|
533 | for (iRow = 0; iRow < 3; iRow++) |
---|
534 | { |
---|
535 | fTmp0 = kR[1][iRow]; |
---|
536 | fTmp1 = kR[2][iRow]; |
---|
537 | kR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1; |
---|
538 | kR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1; |
---|
539 | } |
---|
540 | |
---|
541 | kS[0] = kA[0][0]; |
---|
542 | kS[1] = fCos0*fCos1*kA[1][1] - |
---|
543 | fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]); |
---|
544 | kS[2] = fSin0*fSin1*kA[1][1] + |
---|
545 | fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]); |
---|
546 | break; |
---|
547 | } |
---|
548 | } |
---|
549 | else |
---|
550 | { |
---|
551 | if ( bTest2 ) |
---|
552 | { |
---|
553 | // 2x2 closed form factorization |
---|
554 | fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] - |
---|
555 | kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]); |
---|
556 | fTan0 = 0.5*(-fTmp+Math::Sqrt(fTmp*fTmp + 4.0)); |
---|
557 | fCos0 = Math::InvSqrt(1.0+fTan0*fTan0); |
---|
558 | fSin0 = fTan0*fCos0; |
---|
559 | |
---|
560 | for (iCol = 0; iCol < 3; iCol++) |
---|
561 | { |
---|
562 | fTmp0 = kL[iCol][0]; |
---|
563 | fTmp1 = kL[iCol][1]; |
---|
564 | kL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1; |
---|
565 | kL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1; |
---|
566 | } |
---|
567 | |
---|
568 | fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0]; |
---|
569 | fCos1 = Math::InvSqrt(1.0+fTan1*fTan1); |
---|
570 | fSin1 = -fTan1*fCos1; |
---|
571 | |
---|
572 | for (iRow = 0; iRow < 3; iRow++) |
---|
573 | { |
---|
574 | fTmp0 = kR[0][iRow]; |
---|
575 | fTmp1 = kR[1][iRow]; |
---|
576 | kR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1; |
---|
577 | kR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1; |
---|
578 | } |
---|
579 | |
---|
580 | kS[0] = fCos0*fCos1*kA[0][0] - |
---|
581 | fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]); |
---|
582 | kS[1] = fSin0*fSin1*kA[0][0] + |
---|
583 | fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]); |
---|
584 | kS[2] = kA[2][2]; |
---|
585 | break; |
---|
586 | } |
---|
587 | else |
---|
588 | { |
---|
589 | GolubKahanStep(kA,kL,kR); |
---|
590 | } |
---|
591 | } |
---|
592 | } |
---|
593 | |
---|
594 | // positize diagonal |
---|
595 | for (iRow = 0; iRow < 3; iRow++) |
---|
596 | { |
---|
597 | if ( kS[iRow] < 0.0 ) |
---|
598 | { |
---|
599 | kS[iRow] = -kS[iRow]; |
---|
600 | for (iCol = 0; iCol < 3; iCol++) |
---|
601 | kR[iRow][iCol] = -kR[iRow][iCol]; |
---|
602 | } |
---|
603 | } |
---|
604 | } |
---|
605 | //----------------------------------------------------------------------- |
---|
606 | void Matrix3::SingularValueComposition (const Matrix3& kL, |
---|
607 | const Vector3& kS, const Matrix3& kR) |
---|
608 | { |
---|
609 | size_t iRow, iCol; |
---|
610 | Matrix3 kTmp; |
---|
611 | |
---|
612 | // product S*R |
---|
613 | for (iRow = 0; iRow < 3; iRow++) |
---|
614 | { |
---|
615 | for (iCol = 0; iCol < 3; iCol++) |
---|
616 | kTmp[iRow][iCol] = kS[iRow]*kR[iRow][iCol]; |
---|
617 | } |
---|
618 | |
---|
619 | // product L*S*R |
---|
620 | for (iRow = 0; iRow < 3; iRow++) |
---|
621 | { |
---|
622 | for (iCol = 0; iCol < 3; iCol++) |
---|
623 | { |
---|
624 | m[iRow][iCol] = 0.0; |
---|
625 | for (int iMid = 0; iMid < 3; iMid++) |
---|
626 | m[iRow][iCol] += kL[iRow][iMid]*kTmp[iMid][iCol]; |
---|
627 | } |
---|
628 | } |
---|
629 | } |
---|
630 | //----------------------------------------------------------------------- |
---|
631 | void Matrix3::Orthonormalize () |
---|
632 | { |
---|
633 | // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is |
---|
634 | // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2], |
---|
635 | // |
---|
636 | // q0 = m0/|m0| |
---|
637 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
---|
638 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
---|
639 | // |
---|
640 | // where |V| indicates length of vector V and A*B indicates dot |
---|
641 | // product of vectors A and B. |
---|
642 | |
---|
643 | // compute q0 |
---|
644 | Real fInvLength = Math::InvSqrt(m[0][0]*m[0][0] |
---|
645 | + m[1][0]*m[1][0] + |
---|
646 | m[2][0]*m[2][0]); |
---|
647 | |
---|
648 | m[0][0] *= fInvLength; |
---|
649 | m[1][0] *= fInvLength; |
---|
650 | m[2][0] *= fInvLength; |
---|
651 | |
---|
652 | // compute q1 |
---|
653 | Real fDot0 = |
---|
654 | m[0][0]*m[0][1] + |
---|
655 | m[1][0]*m[1][1] + |
---|
656 | m[2][0]*m[2][1]; |
---|
657 | |
---|
658 | m[0][1] -= fDot0*m[0][0]; |
---|
659 | m[1][1] -= fDot0*m[1][0]; |
---|
660 | m[2][1] -= fDot0*m[2][0]; |
---|
661 | |
---|
662 | fInvLength = Math::InvSqrt(m[0][1]*m[0][1] + |
---|
663 | m[1][1]*m[1][1] + |
---|
664 | m[2][1]*m[2][1]); |
---|
665 | |
---|
666 | m[0][1] *= fInvLength; |
---|
667 | m[1][1] *= fInvLength; |
---|
668 | m[2][1] *= fInvLength; |
---|
669 | |
---|
670 | // compute q2 |
---|
671 | Real fDot1 = |
---|
672 | m[0][1]*m[0][2] + |
---|
673 | m[1][1]*m[1][2] + |
---|
674 | m[2][1]*m[2][2]; |
---|
675 | |
---|
676 | fDot0 = |
---|
677 | m[0][0]*m[0][2] + |
---|
678 | m[1][0]*m[1][2] + |
---|
679 | m[2][0]*m[2][2]; |
---|
680 | |
---|
681 | m[0][2] -= fDot0*m[0][0] + fDot1*m[0][1]; |
---|
682 | m[1][2] -= fDot0*m[1][0] + fDot1*m[1][1]; |
---|
683 | m[2][2] -= fDot0*m[2][0] + fDot1*m[2][1]; |
---|
684 | |
---|
685 | fInvLength = Math::InvSqrt(m[0][2]*m[0][2] + |
---|
686 | m[1][2]*m[1][2] + |
---|
687 | m[2][2]*m[2][2]); |
---|
688 | |
---|
689 | m[0][2] *= fInvLength; |
---|
690 | m[1][2] *= fInvLength; |
---|
691 | m[2][2] *= fInvLength; |
---|
692 | } |
---|
693 | //----------------------------------------------------------------------- |
---|
694 | void Matrix3::QDUDecomposition (Matrix3& kQ, |
---|
695 | Vector3& kD, Vector3& kU) const |
---|
696 | { |
---|
697 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
---|
698 | // and U is upper triangular with ones on its diagonal. Algorithm uses |
---|
699 | // Gram-Schmidt orthogonalization (the QR algorithm). |
---|
700 | // |
---|
701 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
---|
702 | // |
---|
703 | // q0 = m0/|m0| |
---|
704 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
---|
705 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
---|
706 | // |
---|
707 | // where |V| indicates length of vector V and A*B indicates dot |
---|
708 | // product of vectors A and B. The matrix R has entries |
---|
709 | // |
---|
710 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
---|
711 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
---|
712 | // r20 = 0 r21 = 0 r22 = q2*m2 |
---|
713 | // |
---|
714 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
---|
715 | // u02 = r02/r00, and u12 = r12/r11. |
---|
716 | |
---|
717 | // Q = rotation |
---|
718 | // D = scaling |
---|
719 | // U = shear |
---|
720 | |
---|
721 | // D stores the three diagonal entries r00, r11, r22 |
---|
722 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
---|
723 | |
---|
724 | // build orthogonal matrix Q |
---|
725 | Real fInvLength = Math::InvSqrt(m[0][0]*m[0][0] |
---|
726 | + m[1][0]*m[1][0] + |
---|
727 | m[2][0]*m[2][0]); |
---|
728 | kQ[0][0] = m[0][0]*fInvLength; |
---|
729 | kQ[1][0] = m[1][0]*fInvLength; |
---|
730 | kQ[2][0] = m[2][0]*fInvLength; |
---|
731 | |
---|
732 | Real fDot = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] + |
---|
733 | kQ[2][0]*m[2][1]; |
---|
734 | kQ[0][1] = m[0][1]-fDot*kQ[0][0]; |
---|
735 | kQ[1][1] = m[1][1]-fDot*kQ[1][0]; |
---|
736 | kQ[2][1] = m[2][1]-fDot*kQ[2][0]; |
---|
737 | fInvLength = Math::InvSqrt(kQ[0][1]*kQ[0][1] + kQ[1][1]*kQ[1][1] + |
---|
738 | kQ[2][1]*kQ[2][1]); |
---|
739 | kQ[0][1] *= fInvLength; |
---|
740 | kQ[1][1] *= fInvLength; |
---|
741 | kQ[2][1] *= fInvLength; |
---|
742 | |
---|
743 | fDot = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] + |
---|
744 | kQ[2][0]*m[2][2]; |
---|
745 | kQ[0][2] = m[0][2]-fDot*kQ[0][0]; |
---|
746 | kQ[1][2] = m[1][2]-fDot*kQ[1][0]; |
---|
747 | kQ[2][2] = m[2][2]-fDot*kQ[2][0]; |
---|
748 | fDot = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] + |
---|
749 | kQ[2][1]*m[2][2]; |
---|
750 | kQ[0][2] -= fDot*kQ[0][1]; |
---|
751 | kQ[1][2] -= fDot*kQ[1][1]; |
---|
752 | kQ[2][2] -= fDot*kQ[2][1]; |
---|
753 | fInvLength = Math::InvSqrt(kQ[0][2]*kQ[0][2] + kQ[1][2]*kQ[1][2] + |
---|
754 | kQ[2][2]*kQ[2][2]); |
---|
755 | kQ[0][2] *= fInvLength; |
---|
756 | kQ[1][2] *= fInvLength; |
---|
757 | kQ[2][2] *= fInvLength; |
---|
758 | |
---|
759 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
---|
760 | Real fDet = kQ[0][0]*kQ[1][1]*kQ[2][2] + kQ[0][1]*kQ[1][2]*kQ[2][0] + |
---|
761 | kQ[0][2]*kQ[1][0]*kQ[2][1] - kQ[0][2]*kQ[1][1]*kQ[2][0] - |
---|
762 | kQ[0][1]*kQ[1][0]*kQ[2][2] - kQ[0][0]*kQ[1][2]*kQ[2][1]; |
---|
763 | |
---|
764 | if ( fDet < 0.0 ) |
---|
765 | { |
---|
766 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
767 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
768 | kQ[iRow][iCol] = -kQ[iRow][iCol]; |
---|
769 | } |
---|
770 | |
---|
771 | // build "right" matrix R |
---|
772 | Matrix3 kR; |
---|
773 | kR[0][0] = kQ[0][0]*m[0][0] + kQ[1][0]*m[1][0] + |
---|
774 | kQ[2][0]*m[2][0]; |
---|
775 | kR[0][1] = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] + |
---|
776 | kQ[2][0]*m[2][1]; |
---|
777 | kR[1][1] = kQ[0][1]*m[0][1] + kQ[1][1]*m[1][1] + |
---|
778 | kQ[2][1]*m[2][1]; |
---|
779 | kR[0][2] = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] + |
---|
780 | kQ[2][0]*m[2][2]; |
---|
781 | kR[1][2] = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] + |
---|
782 | kQ[2][1]*m[2][2]; |
---|
783 | kR[2][2] = kQ[0][2]*m[0][2] + kQ[1][2]*m[1][2] + |
---|
784 | kQ[2][2]*m[2][2]; |
---|
785 | |
---|
786 | // the scaling component |
---|
787 | kD[0] = kR[0][0]; |
---|
788 | kD[1] = kR[1][1]; |
---|
789 | kD[2] = kR[2][2]; |
---|
790 | |
---|
791 | // the shear component |
---|
792 | Real fInvD0 = 1.0/kD[0]; |
---|
793 | kU[0] = kR[0][1]*fInvD0; |
---|
794 | kU[1] = kR[0][2]*fInvD0; |
---|
795 | kU[2] = kR[1][2]/kD[1]; |
---|
796 | } |
---|
797 | //----------------------------------------------------------------------- |
---|
798 | Real Matrix3::MaxCubicRoot (Real afCoeff[3]) |
---|
799 | { |
---|
800 | // Spectral norm is for A^T*A, so characteristic polynomial |
---|
801 | // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive real roots. |
---|
802 | // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1]. |
---|
803 | |
---|
804 | // quick out for uniform scale (triple root) |
---|
805 | const Real fOneThird = 1.0/3.0; |
---|
806 | const Real fEpsilon = 1e-06; |
---|
807 | Real fDiscr = afCoeff[2]*afCoeff[2] - 3.0*afCoeff[1]; |
---|
808 | if ( fDiscr <= fEpsilon ) |
---|
809 | return -fOneThird*afCoeff[2]; |
---|
810 | |
---|
811 | // Compute an upper bound on roots of P(x). This assumes that A^T*A |
---|
812 | // has been scaled by its largest entry. |
---|
813 | Real fX = 1.0; |
---|
814 | Real fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX)); |
---|
815 | if ( fPoly < 0.0 ) |
---|
816 | { |
---|
817 | // uses a matrix norm to find an upper bound on maximum root |
---|
818 | fX = Math::Abs(afCoeff[0]); |
---|
819 | Real fTmp = 1.0+Math::Abs(afCoeff[1]); |
---|
820 | if ( fTmp > fX ) |
---|
821 | fX = fTmp; |
---|
822 | fTmp = 1.0+Math::Abs(afCoeff[2]); |
---|
823 | if ( fTmp > fX ) |
---|
824 | fX = fTmp; |
---|
825 | } |
---|
826 | |
---|
827 | // Newton's method to find root |
---|
828 | Real fTwoC2 = 2.0*afCoeff[2]; |
---|
829 | for (int i = 0; i < 16; i++) |
---|
830 | { |
---|
831 | fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX)); |
---|
832 | if ( Math::Abs(fPoly) <= fEpsilon ) |
---|
833 | return fX; |
---|
834 | |
---|
835 | Real fDeriv = afCoeff[1]+fX*(fTwoC2+3.0*fX); |
---|
836 | fX -= fPoly/fDeriv; |
---|
837 | } |
---|
838 | |
---|
839 | return fX; |
---|
840 | } |
---|
841 | //----------------------------------------------------------------------- |
---|
842 | Real Matrix3::SpectralNorm () const |
---|
843 | { |
---|
844 | Matrix3 kP; |
---|
845 | size_t iRow, iCol; |
---|
846 | Real fPmax = 0.0; |
---|
847 | for (iRow = 0; iRow < 3; iRow++) |
---|
848 | { |
---|
849 | for (iCol = 0; iCol < 3; iCol++) |
---|
850 | { |
---|
851 | kP[iRow][iCol] = 0.0; |
---|
852 | for (int iMid = 0; iMid < 3; iMid++) |
---|
853 | { |
---|
854 | kP[iRow][iCol] += |
---|
855 | m[iMid][iRow]*m[iMid][iCol]; |
---|
856 | } |
---|
857 | if ( kP[iRow][iCol] > fPmax ) |
---|
858 | fPmax = kP[iRow][iCol]; |
---|
859 | } |
---|
860 | } |
---|
861 | |
---|
862 | Real fInvPmax = 1.0/fPmax; |
---|
863 | for (iRow = 0; iRow < 3; iRow++) |
---|
864 | { |
---|
865 | for (iCol = 0; iCol < 3; iCol++) |
---|
866 | kP[iRow][iCol] *= fInvPmax; |
---|
867 | } |
---|
868 | |
---|
869 | Real afCoeff[3]; |
---|
870 | afCoeff[0] = -(kP[0][0]*(kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]) + |
---|
871 | kP[0][1]*(kP[2][0]*kP[1][2]-kP[1][0]*kP[2][2]) + |
---|
872 | kP[0][2]*(kP[1][0]*kP[2][1]-kP[2][0]*kP[1][1])); |
---|
873 | afCoeff[1] = kP[0][0]*kP[1][1]-kP[0][1]*kP[1][0] + |
---|
874 | kP[0][0]*kP[2][2]-kP[0][2]*kP[2][0] + |
---|
875 | kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]; |
---|
876 | afCoeff[2] = -(kP[0][0]+kP[1][1]+kP[2][2]); |
---|
877 | |
---|
878 | Real fRoot = MaxCubicRoot(afCoeff); |
---|
879 | Real fNorm = Math::Sqrt(fPmax*fRoot); |
---|
880 | return fNorm; |
---|
881 | } |
---|
882 | //----------------------------------------------------------------------- |
---|
883 | void Matrix3::ToAxisAngle (Vector3& rkAxis, Radian& rfRadians) const |
---|
884 | { |
---|
885 | // Let (x,y,z) be the unit-length axis and let A be an angle of rotation. |
---|
886 | // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where |
---|
887 | // I is the identity and |
---|
888 | // |
---|
889 | // +- -+ |
---|
890 | // P = | 0 -z +y | |
---|
891 | // | +z 0 -x | |
---|
892 | // | -y +x 0 | |
---|
893 | // +- -+ |
---|
894 | // |
---|
895 | // If A > 0, R represents a counterclockwise rotation about the axis in |
---|
896 | // the sense of looking from the tip of the axis vector towards the |
---|
897 | // origin. Some algebra will show that |
---|
898 | // |
---|
899 | // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P |
---|
900 | // |
---|
901 | // In the event that A = pi, R-R^t = 0 which prevents us from extracting |
---|
902 | // the axis through P. Instead note that R = I+2*P^2 when A = pi, so |
---|
903 | // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and |
---|
904 | // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi, |
---|
905 | // it does not matter which sign you choose on the square roots. |
---|
906 | |
---|
907 | Real fTrace = m[0][0] + m[1][1] + m[2][2]; |
---|
908 | Real fCos = 0.5*(fTrace-1.0); |
---|
909 | rfRadians = Math::ACos(fCos); // in [0,PI] |
---|
910 | |
---|
911 | if ( rfRadians > Radian(0.0) ) |
---|
912 | { |
---|
913 | if ( rfRadians < Radian(Math::PI) ) |
---|
914 | { |
---|
915 | rkAxis.x = m[2][1]-m[1][2]; |
---|
916 | rkAxis.y = m[0][2]-m[2][0]; |
---|
917 | rkAxis.z = m[1][0]-m[0][1]; |
---|
918 | rkAxis.normalise(); |
---|
919 | } |
---|
920 | else |
---|
921 | { |
---|
922 | // angle is PI |
---|
923 | float fHalfInverse; |
---|
924 | if ( m[0][0] >= m[1][1] ) |
---|
925 | { |
---|
926 | // r00 >= r11 |
---|
927 | if ( m[0][0] >= m[2][2] ) |
---|
928 | { |
---|
929 | // r00 is maximum diagonal term |
---|
930 | rkAxis.x = 0.5*Math::Sqrt(m[0][0] - |
---|
931 | m[1][1] - m[2][2] + 1.0); |
---|
932 | fHalfInverse = 0.5/rkAxis.x; |
---|
933 | rkAxis.y = fHalfInverse*m[0][1]; |
---|
934 | rkAxis.z = fHalfInverse*m[0][2]; |
---|
935 | } |
---|
936 | else |
---|
937 | { |
---|
938 | // r22 is maximum diagonal term |
---|
939 | rkAxis.z = 0.5*Math::Sqrt(m[2][2] - |
---|
940 | m[0][0] - m[1][1] + 1.0); |
---|
941 | fHalfInverse = 0.5/rkAxis.z; |
---|
942 | rkAxis.x = fHalfInverse*m[0][2]; |
---|
943 | rkAxis.y = fHalfInverse*m[1][2]; |
---|
944 | } |
---|
945 | } |
---|
946 | else |
---|
947 | { |
---|
948 | // r11 > r00 |
---|
949 | if ( m[1][1] >= m[2][2] ) |
---|
950 | { |
---|
951 | // r11 is maximum diagonal term |
---|
952 | rkAxis.y = 0.5*Math::Sqrt(m[1][1] - |
---|
953 | m[0][0] - m[2][2] + 1.0); |
---|
954 | fHalfInverse = 0.5/rkAxis.y; |
---|
955 | rkAxis.x = fHalfInverse*m[0][1]; |
---|
956 | rkAxis.z = fHalfInverse*m[1][2]; |
---|
957 | } |
---|
958 | else |
---|
959 | { |
---|
960 | // r22 is maximum diagonal term |
---|
961 | rkAxis.z = 0.5*Math::Sqrt(m[2][2] - |
---|
962 | m[0][0] - m[1][1] + 1.0); |
---|
963 | fHalfInverse = 0.5/rkAxis.z; |
---|
964 | rkAxis.x = fHalfInverse*m[0][2]; |
---|
965 | rkAxis.y = fHalfInverse*m[1][2]; |
---|
966 | } |
---|
967 | } |
---|
968 | } |
---|
969 | } |
---|
970 | else |
---|
971 | { |
---|
972 | // The angle is 0 and the matrix is the identity. Any axis will |
---|
973 | // work, so just use the x-axis. |
---|
974 | rkAxis.x = 1.0; |
---|
975 | rkAxis.y = 0.0; |
---|
976 | rkAxis.z = 0.0; |
---|
977 | } |
---|
978 | } |
---|
979 | //----------------------------------------------------------------------- |
---|
980 | void Matrix3::FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians) |
---|
981 | { |
---|
982 | Real fCos = Math::Cos(fRadians); |
---|
983 | Real fSin = Math::Sin(fRadians); |
---|
984 | Real fOneMinusCos = 1.0-fCos; |
---|
985 | Real fX2 = rkAxis.x*rkAxis.x; |
---|
986 | Real fY2 = rkAxis.y*rkAxis.y; |
---|
987 | Real fZ2 = rkAxis.z*rkAxis.z; |
---|
988 | Real fXYM = rkAxis.x*rkAxis.y*fOneMinusCos; |
---|
989 | Real fXZM = rkAxis.x*rkAxis.z*fOneMinusCos; |
---|
990 | Real fYZM = rkAxis.y*rkAxis.z*fOneMinusCos; |
---|
991 | Real fXSin = rkAxis.x*fSin; |
---|
992 | Real fYSin = rkAxis.y*fSin; |
---|
993 | Real fZSin = rkAxis.z*fSin; |
---|
994 | |
---|
995 | m[0][0] = fX2*fOneMinusCos+fCos; |
---|
996 | m[0][1] = fXYM-fZSin; |
---|
997 | m[0][2] = fXZM+fYSin; |
---|
998 | m[1][0] = fXYM+fZSin; |
---|
999 | m[1][1] = fY2*fOneMinusCos+fCos; |
---|
1000 | m[1][2] = fYZM-fXSin; |
---|
1001 | m[2][0] = fXZM-fYSin; |
---|
1002 | m[2][1] = fYZM+fXSin; |
---|
1003 | m[2][2] = fZ2*fOneMinusCos+fCos; |
---|
1004 | } |
---|
1005 | //----------------------------------------------------------------------- |
---|
1006 | bool Matrix3::ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle, |
---|
1007 | Radian& rfRAngle) const |
---|
1008 | { |
---|
1009 | // rot = cy*cz -cy*sz sy |
---|
1010 | // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
---|
1011 | // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
---|
1012 | |
---|
1013 | rfPAngle = Radian(Math::ASin(m[0][2])); |
---|
1014 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1015 | { |
---|
1016 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1017 | { |
---|
1018 | rfYAngle = Math::ATan2(-m[1][2],m[2][2]); |
---|
1019 | rfRAngle = Math::ATan2(-m[0][1],m[0][0]); |
---|
1020 | return true; |
---|
1021 | } |
---|
1022 | else |
---|
1023 | { |
---|
1024 | // WARNING. Not a unique solution. |
---|
1025 | Radian fRmY = Math::ATan2(m[1][0],m[1][1]); |
---|
1026 | rfRAngle = Radian(0.0); // any angle works |
---|
1027 | rfYAngle = rfRAngle - fRmY; |
---|
1028 | return false; |
---|
1029 | } |
---|
1030 | } |
---|
1031 | else |
---|
1032 | { |
---|
1033 | // WARNING. Not a unique solution. |
---|
1034 | Radian fRpY = Math::ATan2(m[1][0],m[1][1]); |
---|
1035 | rfRAngle = Radian(0.0); // any angle works |
---|
1036 | rfYAngle = fRpY - rfRAngle; |
---|
1037 | return false; |
---|
1038 | } |
---|
1039 | } |
---|
1040 | //----------------------------------------------------------------------- |
---|
1041 | bool Matrix3::ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle, |
---|
1042 | Radian& rfRAngle) const |
---|
1043 | { |
---|
1044 | // rot = cy*cz -sz cz*sy |
---|
1045 | // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz |
---|
1046 | // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz |
---|
1047 | |
---|
1048 | rfPAngle = Math::ASin(-m[0][1]); |
---|
1049 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1050 | { |
---|
1051 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1052 | { |
---|
1053 | rfYAngle = Math::ATan2(m[2][1],m[1][1]); |
---|
1054 | rfRAngle = Math::ATan2(m[0][2],m[0][0]); |
---|
1055 | return true; |
---|
1056 | } |
---|
1057 | else |
---|
1058 | { |
---|
1059 | // WARNING. Not a unique solution. |
---|
1060 | Radian fRmY = Math::ATan2(-m[2][0],m[2][2]); |
---|
1061 | rfRAngle = Radian(0.0); // any angle works |
---|
1062 | rfYAngle = rfRAngle - fRmY; |
---|
1063 | return false; |
---|
1064 | } |
---|
1065 | } |
---|
1066 | else |
---|
1067 | { |
---|
1068 | // WARNING. Not a unique solution. |
---|
1069 | Radian fRpY = Math::ATan2(-m[2][0],m[2][2]); |
---|
1070 | rfRAngle = Radian(0.0); // any angle works |
---|
1071 | rfYAngle = fRpY - rfRAngle; |
---|
1072 | return false; |
---|
1073 | } |
---|
1074 | } |
---|
1075 | //----------------------------------------------------------------------- |
---|
1076 | bool Matrix3::ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle, |
---|
1077 | Radian& rfRAngle) const |
---|
1078 | { |
---|
1079 | // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy |
---|
1080 | // cx*sz cx*cz -sx |
---|
1081 | // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy |
---|
1082 | |
---|
1083 | rfPAngle = Math::ASin(-m[1][2]); |
---|
1084 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1085 | { |
---|
1086 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1087 | { |
---|
1088 | rfYAngle = Math::ATan2(m[0][2],m[2][2]); |
---|
1089 | rfRAngle = Math::ATan2(m[1][0],m[1][1]); |
---|
1090 | return true; |
---|
1091 | } |
---|
1092 | else |
---|
1093 | { |
---|
1094 | // WARNING. Not a unique solution. |
---|
1095 | Radian fRmY = Math::ATan2(-m[0][1],m[0][0]); |
---|
1096 | rfRAngle = Radian(0.0); // any angle works |
---|
1097 | rfYAngle = rfRAngle - fRmY; |
---|
1098 | return false; |
---|
1099 | } |
---|
1100 | } |
---|
1101 | else |
---|
1102 | { |
---|
1103 | // WARNING. Not a unique solution. |
---|
1104 | Radian fRpY = Math::ATan2(-m[0][1],m[0][0]); |
---|
1105 | rfRAngle = Radian(0.0); // any angle works |
---|
1106 | rfYAngle = fRpY - rfRAngle; |
---|
1107 | return false; |
---|
1108 | } |
---|
1109 | } |
---|
1110 | //----------------------------------------------------------------------- |
---|
1111 | bool Matrix3::ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle, |
---|
1112 | Radian& rfRAngle) const |
---|
1113 | { |
---|
1114 | // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz |
---|
1115 | // sz cx*cz -cz*sx |
---|
1116 | // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz |
---|
1117 | |
---|
1118 | rfPAngle = Math::ASin(m[1][0]); |
---|
1119 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1120 | { |
---|
1121 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1122 | { |
---|
1123 | rfYAngle = Math::ATan2(-m[2][0],m[0][0]); |
---|
1124 | rfRAngle = Math::ATan2(-m[1][2],m[1][1]); |
---|
1125 | return true; |
---|
1126 | } |
---|
1127 | else |
---|
1128 | { |
---|
1129 | // WARNING. Not a unique solution. |
---|
1130 | Radian fRmY = Math::ATan2(m[2][1],m[2][2]); |
---|
1131 | rfRAngle = Radian(0.0); // any angle works |
---|
1132 | rfYAngle = rfRAngle - fRmY; |
---|
1133 | return false; |
---|
1134 | } |
---|
1135 | } |
---|
1136 | else |
---|
1137 | { |
---|
1138 | // WARNING. Not a unique solution. |
---|
1139 | Radian fRpY = Math::ATan2(m[2][1],m[2][2]); |
---|
1140 | rfRAngle = Radian(0.0); // any angle works |
---|
1141 | rfYAngle = fRpY - rfRAngle; |
---|
1142 | return false; |
---|
1143 | } |
---|
1144 | } |
---|
1145 | //----------------------------------------------------------------------- |
---|
1146 | bool Matrix3::ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle, |
---|
1147 | Radian& rfRAngle) const |
---|
1148 | { |
---|
1149 | // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz |
---|
1150 | // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz |
---|
1151 | // -cx*sy sx cx*cy |
---|
1152 | |
---|
1153 | rfPAngle = Math::ASin(m[2][1]); |
---|
1154 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1155 | { |
---|
1156 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1157 | { |
---|
1158 | rfYAngle = Math::ATan2(-m[0][1],m[1][1]); |
---|
1159 | rfRAngle = Math::ATan2(-m[2][0],m[2][2]); |
---|
1160 | return true; |
---|
1161 | } |
---|
1162 | else |
---|
1163 | { |
---|
1164 | // WARNING. Not a unique solution. |
---|
1165 | Radian fRmY = Math::ATan2(m[0][2],m[0][0]); |
---|
1166 | rfRAngle = Radian(0.0); // any angle works |
---|
1167 | rfYAngle = rfRAngle - fRmY; |
---|
1168 | return false; |
---|
1169 | } |
---|
1170 | } |
---|
1171 | else |
---|
1172 | { |
---|
1173 | // WARNING. Not a unique solution. |
---|
1174 | Radian fRpY = Math::ATan2(m[0][2],m[0][0]); |
---|
1175 | rfRAngle = Radian(0.0); // any angle works |
---|
1176 | rfYAngle = fRpY - rfRAngle; |
---|
1177 | return false; |
---|
1178 | } |
---|
1179 | } |
---|
1180 | //----------------------------------------------------------------------- |
---|
1181 | bool Matrix3::ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle, |
---|
1182 | Radian& rfRAngle) const |
---|
1183 | { |
---|
1184 | // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz |
---|
1185 | // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz |
---|
1186 | // -sy cy*sx cx*cy |
---|
1187 | |
---|
1188 | rfPAngle = Math::ASin(-m[2][0]); |
---|
1189 | if ( rfPAngle < Radian(Math::HALF_PI) ) |
---|
1190 | { |
---|
1191 | if ( rfPAngle > Radian(-Math::HALF_PI) ) |
---|
1192 | { |
---|
1193 | rfYAngle = Math::ATan2(m[1][0],m[0][0]); |
---|
1194 | rfRAngle = Math::ATan2(m[2][1],m[2][2]); |
---|
1195 | return true; |
---|
1196 | } |
---|
1197 | else |
---|
1198 | { |
---|
1199 | // WARNING. Not a unique solution. |
---|
1200 | Radian fRmY = Math::ATan2(-m[0][1],m[0][2]); |
---|
1201 | rfRAngle = Radian(0.0); // any angle works |
---|
1202 | rfYAngle = rfRAngle - fRmY; |
---|
1203 | return false; |
---|
1204 | } |
---|
1205 | } |
---|
1206 | else |
---|
1207 | { |
---|
1208 | // WARNING. Not a unique solution. |
---|
1209 | Radian fRpY = Math::ATan2(-m[0][1],m[0][2]); |
---|
1210 | rfRAngle = Radian(0.0); // any angle works |
---|
1211 | rfYAngle = fRpY - rfRAngle; |
---|
1212 | return false; |
---|
1213 | } |
---|
1214 | } |
---|
1215 | //----------------------------------------------------------------------- |
---|
1216 | void Matrix3::FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, |
---|
1217 | const Radian& fRAngle) |
---|
1218 | { |
---|
1219 | Real fCos, fSin; |
---|
1220 | |
---|
1221 | fCos = Math::Cos(fYAngle); |
---|
1222 | fSin = Math::Sin(fYAngle); |
---|
1223 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1224 | |
---|
1225 | fCos = Math::Cos(fPAngle); |
---|
1226 | fSin = Math::Sin(fPAngle); |
---|
1227 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1228 | |
---|
1229 | fCos = Math::Cos(fRAngle); |
---|
1230 | fSin = Math::Sin(fRAngle); |
---|
1231 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1232 | |
---|
1233 | *this = kXMat*(kYMat*kZMat); |
---|
1234 | } |
---|
1235 | //----------------------------------------------------------------------- |
---|
1236 | void Matrix3::FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, |
---|
1237 | const Radian& fRAngle) |
---|
1238 | { |
---|
1239 | Real fCos, fSin; |
---|
1240 | |
---|
1241 | fCos = Math::Cos(fYAngle); |
---|
1242 | fSin = Math::Sin(fYAngle); |
---|
1243 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1244 | |
---|
1245 | fCos = Math::Cos(fPAngle); |
---|
1246 | fSin = Math::Sin(fPAngle); |
---|
1247 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1248 | |
---|
1249 | fCos = Math::Cos(fRAngle); |
---|
1250 | fSin = Math::Sin(fRAngle); |
---|
1251 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1252 | |
---|
1253 | *this = kXMat*(kZMat*kYMat); |
---|
1254 | } |
---|
1255 | //----------------------------------------------------------------------- |
---|
1256 | void Matrix3::FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, |
---|
1257 | const Radian& fRAngle) |
---|
1258 | { |
---|
1259 | Real fCos, fSin; |
---|
1260 | |
---|
1261 | fCos = Math::Cos(fYAngle); |
---|
1262 | fSin = Math::Sin(fYAngle); |
---|
1263 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1264 | |
---|
1265 | fCos = Math::Cos(fPAngle); |
---|
1266 | fSin = Math::Sin(fPAngle); |
---|
1267 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1268 | |
---|
1269 | fCos = Math::Cos(fRAngle); |
---|
1270 | fSin = Math::Sin(fRAngle); |
---|
1271 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1272 | |
---|
1273 | *this = kYMat*(kXMat*kZMat); |
---|
1274 | } |
---|
1275 | //----------------------------------------------------------------------- |
---|
1276 | void Matrix3::FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, |
---|
1277 | const Radian& fRAngle) |
---|
1278 | { |
---|
1279 | Real fCos, fSin; |
---|
1280 | |
---|
1281 | fCos = Math::Cos(fYAngle); |
---|
1282 | fSin = Math::Sin(fYAngle); |
---|
1283 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1284 | |
---|
1285 | fCos = Math::Cos(fPAngle); |
---|
1286 | fSin = Math::Sin(fPAngle); |
---|
1287 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1288 | |
---|
1289 | fCos = Math::Cos(fRAngle); |
---|
1290 | fSin = Math::Sin(fRAngle); |
---|
1291 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1292 | |
---|
1293 | *this = kYMat*(kZMat*kXMat); |
---|
1294 | } |
---|
1295 | //----------------------------------------------------------------------- |
---|
1296 | void Matrix3::FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, |
---|
1297 | const Radian& fRAngle) |
---|
1298 | { |
---|
1299 | Real fCos, fSin; |
---|
1300 | |
---|
1301 | fCos = Math::Cos(fYAngle); |
---|
1302 | fSin = Math::Sin(fYAngle); |
---|
1303 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1304 | |
---|
1305 | fCos = Math::Cos(fPAngle); |
---|
1306 | fSin = Math::Sin(fPAngle); |
---|
1307 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1308 | |
---|
1309 | fCos = Math::Cos(fRAngle); |
---|
1310 | fSin = Math::Sin(fRAngle); |
---|
1311 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1312 | |
---|
1313 | *this = kZMat*(kXMat*kYMat); |
---|
1314 | } |
---|
1315 | //----------------------------------------------------------------------- |
---|
1316 | void Matrix3::FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, |
---|
1317 | const Radian& fRAngle) |
---|
1318 | { |
---|
1319 | Real fCos, fSin; |
---|
1320 | |
---|
1321 | fCos = Math::Cos(fYAngle); |
---|
1322 | fSin = Math::Sin(fYAngle); |
---|
1323 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); |
---|
1324 | |
---|
1325 | fCos = Math::Cos(fPAngle); |
---|
1326 | fSin = Math::Sin(fPAngle); |
---|
1327 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); |
---|
1328 | |
---|
1329 | fCos = Math::Cos(fRAngle); |
---|
1330 | fSin = Math::Sin(fRAngle); |
---|
1331 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); |
---|
1332 | |
---|
1333 | *this = kZMat*(kYMat*kXMat); |
---|
1334 | } |
---|
1335 | //----------------------------------------------------------------------- |
---|
1336 | void Matrix3::Tridiagonal (Real afDiag[3], Real afSubDiag[3]) |
---|
1337 | { |
---|
1338 | // Householder reduction T = Q^t M Q |
---|
1339 | // Input: |
---|
1340 | // mat, symmetric 3x3 matrix M |
---|
1341 | // Output: |
---|
1342 | // mat, orthogonal matrix Q |
---|
1343 | // diag, diagonal entries of T |
---|
1344 | // subd, subdiagonal entries of T (T is symmetric) |
---|
1345 | |
---|
1346 | Real fA = m[0][0]; |
---|
1347 | Real fB = m[0][1]; |
---|
1348 | Real fC = m[0][2]; |
---|
1349 | Real fD = m[1][1]; |
---|
1350 | Real fE = m[1][2]; |
---|
1351 | Real fF = m[2][2]; |
---|
1352 | |
---|
1353 | afDiag[0] = fA; |
---|
1354 | afSubDiag[2] = 0.0; |
---|
1355 | if ( Math::Abs(fC) >= EPSILON ) |
---|
1356 | { |
---|
1357 | Real fLength = Math::Sqrt(fB*fB+fC*fC); |
---|
1358 | Real fInvLength = 1.0/fLength; |
---|
1359 | fB *= fInvLength; |
---|
1360 | fC *= fInvLength; |
---|
1361 | Real fQ = 2.0*fB*fE+fC*(fF-fD); |
---|
1362 | afDiag[1] = fD+fC*fQ; |
---|
1363 | afDiag[2] = fF-fC*fQ; |
---|
1364 | afSubDiag[0] = fLength; |
---|
1365 | afSubDiag[1] = fE-fB*fQ; |
---|
1366 | m[0][0] = 1.0; |
---|
1367 | m[0][1] = 0.0; |
---|
1368 | m[0][2] = 0.0; |
---|
1369 | m[1][0] = 0.0; |
---|
1370 | m[1][1] = fB; |
---|
1371 | m[1][2] = fC; |
---|
1372 | m[2][0] = 0.0; |
---|
1373 | m[2][1] = fC; |
---|
1374 | m[2][2] = -fB; |
---|
1375 | } |
---|
1376 | else |
---|
1377 | { |
---|
1378 | afDiag[1] = fD; |
---|
1379 | afDiag[2] = fF; |
---|
1380 | afSubDiag[0] = fB; |
---|
1381 | afSubDiag[1] = fE; |
---|
1382 | m[0][0] = 1.0; |
---|
1383 | m[0][1] = 0.0; |
---|
1384 | m[0][2] = 0.0; |
---|
1385 | m[1][0] = 0.0; |
---|
1386 | m[1][1] = 1.0; |
---|
1387 | m[1][2] = 0.0; |
---|
1388 | m[2][0] = 0.0; |
---|
1389 | m[2][1] = 0.0; |
---|
1390 | m[2][2] = 1.0; |
---|
1391 | } |
---|
1392 | } |
---|
1393 | //----------------------------------------------------------------------- |
---|
1394 | bool Matrix3::QLAlgorithm (Real afDiag[3], Real afSubDiag[3]) |
---|
1395 | { |
---|
1396 | // QL iteration with implicit shifting to reduce matrix from tridiagonal |
---|
1397 | // to diagonal |
---|
1398 | |
---|
1399 | for (int i0 = 0; i0 < 3; i0++) |
---|
1400 | { |
---|
1401 | const unsigned int iMaxIter = 32; |
---|
1402 | unsigned int iIter; |
---|
1403 | for (iIter = 0; iIter < iMaxIter; iIter++) |
---|
1404 | { |
---|
1405 | int i1; |
---|
1406 | for (i1 = i0; i1 <= 1; i1++) |
---|
1407 | { |
---|
1408 | Real fSum = Math::Abs(afDiag[i1]) + |
---|
1409 | Math::Abs(afDiag[i1+1]); |
---|
1410 | if ( Math::Abs(afSubDiag[i1]) + fSum == fSum ) |
---|
1411 | break; |
---|
1412 | } |
---|
1413 | if ( i1 == i0 ) |
---|
1414 | break; |
---|
1415 | |
---|
1416 | Real fTmp0 = (afDiag[i0+1]-afDiag[i0])/(2.0*afSubDiag[i0]); |
---|
1417 | Real fTmp1 = Math::Sqrt(fTmp0*fTmp0+1.0); |
---|
1418 | if ( fTmp0 < 0.0 ) |
---|
1419 | fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1); |
---|
1420 | else |
---|
1421 | fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1); |
---|
1422 | Real fSin = 1.0; |
---|
1423 | Real fCos = 1.0; |
---|
1424 | Real fTmp2 = 0.0; |
---|
1425 | for (int i2 = i1-1; i2 >= i0; i2--) |
---|
1426 | { |
---|
1427 | Real fTmp3 = fSin*afSubDiag[i2]; |
---|
1428 | Real fTmp4 = fCos*afSubDiag[i2]; |
---|
1429 | if ( Math::Abs(fTmp3) >= Math::Abs(fTmp0) ) |
---|
1430 | { |
---|
1431 | fCos = fTmp0/fTmp3; |
---|
1432 | fTmp1 = Math::Sqrt(fCos*fCos+1.0); |
---|
1433 | afSubDiag[i2+1] = fTmp3*fTmp1; |
---|
1434 | fSin = 1.0/fTmp1; |
---|
1435 | fCos *= fSin; |
---|
1436 | } |
---|
1437 | else |
---|
1438 | { |
---|
1439 | fSin = fTmp3/fTmp0; |
---|
1440 | fTmp1 = Math::Sqrt(fSin*fSin+1.0); |
---|
1441 | afSubDiag[i2+1] = fTmp0*fTmp1; |
---|
1442 | fCos = 1.0/fTmp1; |
---|
1443 | fSin *= fCos; |
---|
1444 | } |
---|
1445 | fTmp0 = afDiag[i2+1]-fTmp2; |
---|
1446 | fTmp1 = (afDiag[i2]-fTmp0)*fSin+2.0*fTmp4*fCos; |
---|
1447 | fTmp2 = fSin*fTmp1; |
---|
1448 | afDiag[i2+1] = fTmp0+fTmp2; |
---|
1449 | fTmp0 = fCos*fTmp1-fTmp4; |
---|
1450 | |
---|
1451 | for (int iRow = 0; iRow < 3; iRow++) |
---|
1452 | { |
---|
1453 | fTmp3 = m[iRow][i2+1]; |
---|
1454 | m[iRow][i2+1] = fSin*m[iRow][i2] + |
---|
1455 | fCos*fTmp3; |
---|
1456 | m[iRow][i2] = fCos*m[iRow][i2] - |
---|
1457 | fSin*fTmp3; |
---|
1458 | } |
---|
1459 | } |
---|
1460 | afDiag[i0] -= fTmp2; |
---|
1461 | afSubDiag[i0] = fTmp0; |
---|
1462 | afSubDiag[i1] = 0.0; |
---|
1463 | } |
---|
1464 | |
---|
1465 | if ( iIter == iMaxIter ) |
---|
1466 | { |
---|
1467 | // should not get here under normal circumstances |
---|
1468 | return false; |
---|
1469 | } |
---|
1470 | } |
---|
1471 | |
---|
1472 | return true; |
---|
1473 | } |
---|
1474 | //----------------------------------------------------------------------- |
---|
1475 | void Matrix3::EigenSolveSymmetric (Real afEigenvalue[3], |
---|
1476 | Vector3 akEigenvector[3]) const |
---|
1477 | { |
---|
1478 | Matrix3 kMatrix = *this; |
---|
1479 | Real afSubDiag[3]; |
---|
1480 | kMatrix.Tridiagonal(afEigenvalue,afSubDiag); |
---|
1481 | kMatrix.QLAlgorithm(afEigenvalue,afSubDiag); |
---|
1482 | |
---|
1483 | for (size_t i = 0; i < 3; i++) |
---|
1484 | { |
---|
1485 | akEigenvector[i][0] = kMatrix[0][i]; |
---|
1486 | akEigenvector[i][1] = kMatrix[1][i]; |
---|
1487 | akEigenvector[i][2] = kMatrix[2][i]; |
---|
1488 | } |
---|
1489 | |
---|
1490 | // make eigenvectors form a right--handed system |
---|
1491 | Vector3 kCross = akEigenvector[1].crossProduct(akEigenvector[2]); |
---|
1492 | Real fDet = akEigenvector[0].dotProduct(kCross); |
---|
1493 | if ( fDet < 0.0 ) |
---|
1494 | { |
---|
1495 | akEigenvector[2][0] = - akEigenvector[2][0]; |
---|
1496 | akEigenvector[2][1] = - akEigenvector[2][1]; |
---|
1497 | akEigenvector[2][2] = - akEigenvector[2][2]; |
---|
1498 | } |
---|
1499 | } |
---|
1500 | //----------------------------------------------------------------------- |
---|
1501 | void Matrix3::TensorProduct (const Vector3& rkU, const Vector3& rkV, |
---|
1502 | Matrix3& rkProduct) |
---|
1503 | { |
---|
1504 | for (size_t iRow = 0; iRow < 3; iRow++) |
---|
1505 | { |
---|
1506 | for (size_t iCol = 0; iCol < 3; iCol++) |
---|
1507 | rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol]; |
---|
1508 | } |
---|
1509 | } |
---|
1510 | //----------------------------------------------------------------------- |
---|
1511 | } |
---|