1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __Matrix3_H__ |
---|
30 | #define __Matrix3_H__ |
---|
31 | |
---|
32 | #include "OgrePrerequisites.h" |
---|
33 | |
---|
34 | #include "OgreVector3.h" |
---|
35 | #include <ostream> |
---|
36 | |
---|
37 | // NB All code adapted from Wild Magic 0.2 Matrix math (free source code) |
---|
38 | // http://www.geometrictools.com/ |
---|
39 | |
---|
40 | // NOTE. The (x,y,z) coordinate system is assumed to be right-handed. |
---|
41 | // Coordinate axis rotation matrices are of the form |
---|
42 | // RX = 1 0 0 |
---|
43 | // 0 cos(t) -sin(t) |
---|
44 | // 0 sin(t) cos(t) |
---|
45 | // where t > 0 indicates a counterclockwise rotation in the yz-plane |
---|
46 | // RY = cos(t) 0 sin(t) |
---|
47 | // 0 1 0 |
---|
48 | // -sin(t) 0 cos(t) |
---|
49 | // where t > 0 indicates a counterclockwise rotation in the zx-plane |
---|
50 | // RZ = cos(t) -sin(t) 0 |
---|
51 | // sin(t) cos(t) 0 |
---|
52 | // 0 0 1 |
---|
53 | // where t > 0 indicates a counterclockwise rotation in the xy-plane. |
---|
54 | |
---|
55 | namespace Ogre |
---|
56 | { |
---|
57 | /** A 3x3 matrix which can represent rotations around axes. |
---|
58 | @note |
---|
59 | <b>All the code is adapted from the Wild Magic 0.2 Matrix |
---|
60 | library (http://www.geometrictools.com/).</b> |
---|
61 | @par |
---|
62 | The coordinate system is assumed to be <b>right-handed</b>. |
---|
63 | */ |
---|
64 | class _OgreExport Matrix3 |
---|
65 | { |
---|
66 | public: |
---|
67 | /** Default constructor. |
---|
68 | @note |
---|
69 | It does <b>NOT</b> initialize the matrix for efficiency. |
---|
70 | */ |
---|
71 | inline Matrix3 () {}; |
---|
72 | inline explicit Matrix3 (const Real arr[3][3]) |
---|
73 | { |
---|
74 | memcpy(m,arr,9*sizeof(Real)); |
---|
75 | } |
---|
76 | inline Matrix3 (const Matrix3& rkMatrix) |
---|
77 | { |
---|
78 | memcpy(m,rkMatrix.m,9*sizeof(Real)); |
---|
79 | } |
---|
80 | Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02, |
---|
81 | Real fEntry10, Real fEntry11, Real fEntry12, |
---|
82 | Real fEntry20, Real fEntry21, Real fEntry22) |
---|
83 | { |
---|
84 | m[0][0] = fEntry00; |
---|
85 | m[0][1] = fEntry01; |
---|
86 | m[0][2] = fEntry02; |
---|
87 | m[1][0] = fEntry10; |
---|
88 | m[1][1] = fEntry11; |
---|
89 | m[1][2] = fEntry12; |
---|
90 | m[2][0] = fEntry20; |
---|
91 | m[2][1] = fEntry21; |
---|
92 | m[2][2] = fEntry22; |
---|
93 | } |
---|
94 | |
---|
95 | // member access, allows use of construct mat[r][c] |
---|
96 | inline Real* operator[] (size_t iRow) const |
---|
97 | { |
---|
98 | return (Real*)m[iRow]; |
---|
99 | } |
---|
100 | /*inline operator Real* () |
---|
101 | { |
---|
102 | return (Real*)m[0]; |
---|
103 | }*/ |
---|
104 | Vector3 GetColumn (size_t iCol) const; |
---|
105 | void SetColumn(size_t iCol, const Vector3& vec); |
---|
106 | void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis); |
---|
107 | |
---|
108 | // assignment and comparison |
---|
109 | inline Matrix3& operator= (const Matrix3& rkMatrix) |
---|
110 | { |
---|
111 | memcpy(m,rkMatrix.m,9*sizeof(Real)); |
---|
112 | return *this; |
---|
113 | } |
---|
114 | bool operator== (const Matrix3& rkMatrix) const; |
---|
115 | inline bool operator!= (const Matrix3& rkMatrix) const |
---|
116 | { |
---|
117 | return !operator==(rkMatrix); |
---|
118 | } |
---|
119 | |
---|
120 | // arithmetic operations |
---|
121 | Matrix3 operator+ (const Matrix3& rkMatrix) const; |
---|
122 | Matrix3 operator- (const Matrix3& rkMatrix) const; |
---|
123 | Matrix3 operator* (const Matrix3& rkMatrix) const; |
---|
124 | Matrix3 operator- () const; |
---|
125 | |
---|
126 | // matrix * vector [3x3 * 3x1 = 3x1] |
---|
127 | Vector3 operator* (const Vector3& rkVector) const; |
---|
128 | |
---|
129 | // vector * matrix [1x3 * 3x3 = 1x3] |
---|
130 | _OgreExport friend Vector3 operator* (const Vector3& rkVector, |
---|
131 | const Matrix3& rkMatrix); |
---|
132 | |
---|
133 | // matrix * scalar |
---|
134 | Matrix3 operator* (Real fScalar) const; |
---|
135 | |
---|
136 | // scalar * matrix |
---|
137 | _OgreExport friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix); |
---|
138 | |
---|
139 | // utilities |
---|
140 | Matrix3 Transpose () const; |
---|
141 | bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const; |
---|
142 | Matrix3 Inverse (Real fTolerance = 1e-06) const; |
---|
143 | Real Determinant () const; |
---|
144 | |
---|
145 | // singular value decomposition |
---|
146 | void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS, |
---|
147 | Matrix3& rkR) const; |
---|
148 | void SingularValueComposition (const Matrix3& rkL, |
---|
149 | const Vector3& rkS, const Matrix3& rkR); |
---|
150 | |
---|
151 | // Gram-Schmidt orthonormalization (applied to columns of rotation matrix) |
---|
152 | void Orthonormalize (); |
---|
153 | |
---|
154 | // orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12) |
---|
155 | void QDUDecomposition (Matrix3& rkQ, Vector3& rkD, |
---|
156 | Vector3& rkU) const; |
---|
157 | |
---|
158 | Real SpectralNorm () const; |
---|
159 | |
---|
160 | // matrix must be orthonormal |
---|
161 | void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const; |
---|
162 | inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const { |
---|
163 | Radian r; |
---|
164 | ToAxisAngle ( rkAxis, r ); |
---|
165 | rfAngle = r; |
---|
166 | } |
---|
167 | void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians); |
---|
168 | |
---|
169 | // The matrix must be orthonormal. The decomposition is yaw*pitch*roll |
---|
170 | // where yaw is rotation about the Up vector, pitch is rotation about the |
---|
171 | // Right axis, and roll is rotation about the Direction axis. |
---|
172 | bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle, |
---|
173 | Radian& rfRAngle) const; |
---|
174 | bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle, |
---|
175 | Radian& rfRAngle) const; |
---|
176 | bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle, |
---|
177 | Radian& rfRAngle) const; |
---|
178 | bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle, |
---|
179 | Radian& rfRAngle) const; |
---|
180 | bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle, |
---|
181 | Radian& rfRAngle) const; |
---|
182 | bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle, |
---|
183 | Radian& rfRAngle) const; |
---|
184 | void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
185 | void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
186 | void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
187 | void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
188 | void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
189 | void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle); |
---|
190 | // eigensolver, matrix must be symmetric |
---|
191 | void EigenSolveSymmetric (Real afEigenvalue[3], |
---|
192 | Vector3 akEigenvector[3]) const; |
---|
193 | |
---|
194 | static void TensorProduct (const Vector3& rkU, const Vector3& rkV, |
---|
195 | Matrix3& rkProduct); |
---|
196 | |
---|
197 | /** Determines if this matrix involves a scaling. */ |
---|
198 | inline bool hasScale() const |
---|
199 | { |
---|
200 | // check magnitude of column vectors (==local axes) |
---|
201 | Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0]; |
---|
202 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
203 | return true; |
---|
204 | t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1]; |
---|
205 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
206 | return true; |
---|
207 | t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2]; |
---|
208 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
209 | return true; |
---|
210 | |
---|
211 | return false; |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | static const Real EPSILON; |
---|
216 | static const Matrix3 ZERO; |
---|
217 | static const Matrix3 IDENTITY; |
---|
218 | |
---|
219 | protected: |
---|
220 | // support for eigensolver |
---|
221 | void Tridiagonal (Real afDiag[3], Real afSubDiag[3]); |
---|
222 | bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]); |
---|
223 | |
---|
224 | // support for singular value decomposition |
---|
225 | static const Real ms_fSvdEpsilon; |
---|
226 | static const unsigned int ms_iSvdMaxIterations; |
---|
227 | static void Bidiagonalize (Matrix3& kA, Matrix3& kL, |
---|
228 | Matrix3& kR); |
---|
229 | static void GolubKahanStep (Matrix3& kA, Matrix3& kL, |
---|
230 | Matrix3& kR); |
---|
231 | |
---|
232 | // support for spectral norm |
---|
233 | static Real MaxCubicRoot (Real afCoeff[3]); |
---|
234 | |
---|
235 | Real m[3][3]; |
---|
236 | |
---|
237 | // for faster access |
---|
238 | friend class Matrix4; |
---|
239 | }; |
---|
240 | } |
---|
241 | #endif |
---|