1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #include "OgreMatrix4.h" |
---|
30 | |
---|
31 | #include "OgreVector3.h" |
---|
32 | #include "OgreMatrix3.h" |
---|
33 | |
---|
34 | namespace Ogre |
---|
35 | { |
---|
36 | |
---|
37 | const Matrix4 Matrix4::ZERO( |
---|
38 | 0, 0, 0, 0, |
---|
39 | 0, 0, 0, 0, |
---|
40 | 0, 0, 0, 0, |
---|
41 | 0, 0, 0, 0 ); |
---|
42 | |
---|
43 | const Matrix4 Matrix4::IDENTITY( |
---|
44 | 1, 0, 0, 0, |
---|
45 | 0, 1, 0, 0, |
---|
46 | 0, 0, 1, 0, |
---|
47 | 0, 0, 0, 1 ); |
---|
48 | |
---|
49 | const Matrix4 Matrix4::CLIPSPACE2DTOIMAGESPACE( |
---|
50 | 0.5, 0, 0, 0.5, |
---|
51 | 0, -0.5, 0, 0.5, |
---|
52 | 0, 0, 1, 0, |
---|
53 | 0, 0, 0, 1); |
---|
54 | |
---|
55 | //----------------------------------------------------------------------- |
---|
56 | inline static Real |
---|
57 | MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2, |
---|
58 | const size_t c0, const size_t c1, const size_t c2) |
---|
59 | { |
---|
60 | return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) - |
---|
61 | m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) + |
---|
62 | m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]); |
---|
63 | } |
---|
64 | //----------------------------------------------------------------------- |
---|
65 | Matrix4 Matrix4::adjoint() const |
---|
66 | { |
---|
67 | return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3), |
---|
68 | -MINOR(*this, 0, 2, 3, 1, 2, 3), |
---|
69 | MINOR(*this, 0, 1, 3, 1, 2, 3), |
---|
70 | -MINOR(*this, 0, 1, 2, 1, 2, 3), |
---|
71 | |
---|
72 | -MINOR(*this, 1, 2, 3, 0, 2, 3), |
---|
73 | MINOR(*this, 0, 2, 3, 0, 2, 3), |
---|
74 | -MINOR(*this, 0, 1, 3, 0, 2, 3), |
---|
75 | MINOR(*this, 0, 1, 2, 0, 2, 3), |
---|
76 | |
---|
77 | MINOR(*this, 1, 2, 3, 0, 1, 3), |
---|
78 | -MINOR(*this, 0, 2, 3, 0, 1, 3), |
---|
79 | MINOR(*this, 0, 1, 3, 0, 1, 3), |
---|
80 | -MINOR(*this, 0, 1, 2, 0, 1, 3), |
---|
81 | |
---|
82 | -MINOR(*this, 1, 2, 3, 0, 1, 2), |
---|
83 | MINOR(*this, 0, 2, 3, 0, 1, 2), |
---|
84 | -MINOR(*this, 0, 1, 3, 0, 1, 2), |
---|
85 | MINOR(*this, 0, 1, 2, 0, 1, 2)); |
---|
86 | } |
---|
87 | //----------------------------------------------------------------------- |
---|
88 | Real Matrix4::determinant() const |
---|
89 | { |
---|
90 | return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) - |
---|
91 | m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) + |
---|
92 | m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) - |
---|
93 | m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2); |
---|
94 | } |
---|
95 | //----------------------------------------------------------------------- |
---|
96 | Matrix4 Matrix4::inverse() const |
---|
97 | { |
---|
98 | Real m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3]; |
---|
99 | Real m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3]; |
---|
100 | Real m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3]; |
---|
101 | Real m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3]; |
---|
102 | |
---|
103 | Real v0 = m20 * m31 - m21 * m30; |
---|
104 | Real v1 = m20 * m32 - m22 * m30; |
---|
105 | Real v2 = m20 * m33 - m23 * m30; |
---|
106 | Real v3 = m21 * m32 - m22 * m31; |
---|
107 | Real v4 = m21 * m33 - m23 * m31; |
---|
108 | Real v5 = m22 * m33 - m23 * m32; |
---|
109 | |
---|
110 | Real t00 = + (v5 * m11 - v4 * m12 + v3 * m13); |
---|
111 | Real t10 = - (v5 * m10 - v2 * m12 + v1 * m13); |
---|
112 | Real t20 = + (v4 * m10 - v2 * m11 + v0 * m13); |
---|
113 | Real t30 = - (v3 * m10 - v1 * m11 + v0 * m12); |
---|
114 | |
---|
115 | Real invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03); |
---|
116 | |
---|
117 | Real d00 = t00 * invDet; |
---|
118 | Real d10 = t10 * invDet; |
---|
119 | Real d20 = t20 * invDet; |
---|
120 | Real d30 = t30 * invDet; |
---|
121 | |
---|
122 | Real d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
---|
123 | Real d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
---|
124 | Real d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
---|
125 | Real d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
---|
126 | |
---|
127 | v0 = m10 * m31 - m11 * m30; |
---|
128 | v1 = m10 * m32 - m12 * m30; |
---|
129 | v2 = m10 * m33 - m13 * m30; |
---|
130 | v3 = m11 * m32 - m12 * m31; |
---|
131 | v4 = m11 * m33 - m13 * m31; |
---|
132 | v5 = m12 * m33 - m13 * m32; |
---|
133 | |
---|
134 | Real d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
---|
135 | Real d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
---|
136 | Real d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
---|
137 | Real d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
---|
138 | |
---|
139 | v0 = m21 * m10 - m20 * m11; |
---|
140 | v1 = m22 * m10 - m20 * m12; |
---|
141 | v2 = m23 * m10 - m20 * m13; |
---|
142 | v3 = m22 * m11 - m21 * m12; |
---|
143 | v4 = m23 * m11 - m21 * m13; |
---|
144 | v5 = m23 * m12 - m22 * m13; |
---|
145 | |
---|
146 | Real d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet; |
---|
147 | Real d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet; |
---|
148 | Real d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet; |
---|
149 | Real d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet; |
---|
150 | |
---|
151 | return Matrix4( |
---|
152 | d00, d01, d02, d03, |
---|
153 | d10, d11, d12, d13, |
---|
154 | d20, d21, d22, d23, |
---|
155 | d30, d31, d32, d33); |
---|
156 | } |
---|
157 | //----------------------------------------------------------------------- |
---|
158 | Matrix4 Matrix4::inverseAffine(void) const |
---|
159 | { |
---|
160 | assert(isAffine()); |
---|
161 | |
---|
162 | Real m10 = m[1][0], m11 = m[1][1], m12 = m[1][2]; |
---|
163 | Real m20 = m[2][0], m21 = m[2][1], m22 = m[2][2]; |
---|
164 | |
---|
165 | Real t00 = m22 * m11 - m21 * m12; |
---|
166 | Real t10 = m20 * m12 - m22 * m10; |
---|
167 | Real t20 = m21 * m10 - m20 * m11; |
---|
168 | |
---|
169 | Real m00 = m[0][0], m01 = m[0][1], m02 = m[0][2]; |
---|
170 | |
---|
171 | Real invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20); |
---|
172 | |
---|
173 | t00 *= invDet; t10 *= invDet; t20 *= invDet; |
---|
174 | |
---|
175 | m00 *= invDet; m01 *= invDet; m02 *= invDet; |
---|
176 | |
---|
177 | Real r00 = t00; |
---|
178 | Real r01 = m02 * m21 - m01 * m22; |
---|
179 | Real r02 = m01 * m12 - m02 * m11; |
---|
180 | |
---|
181 | Real r10 = t10; |
---|
182 | Real r11 = m00 * m22 - m02 * m20; |
---|
183 | Real r12 = m02 * m10 - m00 * m12; |
---|
184 | |
---|
185 | Real r20 = t20; |
---|
186 | Real r21 = m01 * m20 - m00 * m21; |
---|
187 | Real r22 = m00 * m11 - m01 * m10; |
---|
188 | |
---|
189 | Real m03 = m[0][3], m13 = m[1][3], m23 = m[2][3]; |
---|
190 | |
---|
191 | Real r03 = - (r00 * m03 + r01 * m13 + r02 * m23); |
---|
192 | Real r13 = - (r10 * m03 + r11 * m13 + r12 * m23); |
---|
193 | Real r23 = - (r20 * m03 + r21 * m13 + r22 * m23); |
---|
194 | |
---|
195 | return Matrix4( |
---|
196 | r00, r01, r02, r03, |
---|
197 | r10, r11, r12, r13, |
---|
198 | r20, r21, r22, r23, |
---|
199 | 0, 0, 0, 1); |
---|
200 | } |
---|
201 | //----------------------------------------------------------------------- |
---|
202 | void Matrix4::makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation) |
---|
203 | { |
---|
204 | // Ordering: |
---|
205 | // 1. Scale |
---|
206 | // 2. Rotate |
---|
207 | // 3. Translate |
---|
208 | |
---|
209 | Matrix3 rot3x3, scale3x3; |
---|
210 | orientation.ToRotationMatrix(rot3x3); |
---|
211 | scale3x3 = Matrix3::ZERO; |
---|
212 | scale3x3[0][0] = scale.x; |
---|
213 | scale3x3[1][1] = scale.y; |
---|
214 | scale3x3[2][2] = scale.z; |
---|
215 | |
---|
216 | // Set up final matrix with scale, rotation and translation |
---|
217 | *this = rot3x3 * scale3x3; |
---|
218 | this->setTrans(position); |
---|
219 | |
---|
220 | // No projection term |
---|
221 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
---|
222 | } |
---|
223 | //----------------------------------------------------------------------- |
---|
224 | void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation) |
---|
225 | { |
---|
226 | // Invert the parameters |
---|
227 | Vector3 invTranslate = -position; |
---|
228 | Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z); |
---|
229 | Quaternion invRot = orientation.Inverse(); |
---|
230 | |
---|
231 | // Because we're inverting, order is translation, rotation, scale |
---|
232 | // So make translation relative to scale & rotation |
---|
233 | invTranslate *= invScale; // scale |
---|
234 | invTranslate = invRot * invTranslate; // rotate |
---|
235 | |
---|
236 | // Next, make a 3x3 rotation matrix and apply inverse scale |
---|
237 | Matrix3 rot3x3, scale3x3; |
---|
238 | invRot.ToRotationMatrix(rot3x3); |
---|
239 | scale3x3 = Matrix3::ZERO; |
---|
240 | scale3x3[0][0] = invScale.x; |
---|
241 | scale3x3[1][1] = invScale.y; |
---|
242 | scale3x3[2][2] = invScale.z; |
---|
243 | |
---|
244 | // Set up final matrix with scale, rotation and translation |
---|
245 | *this = scale3x3 * rot3x3; |
---|
246 | this->setTrans(invTranslate); |
---|
247 | |
---|
248 | // No projection term |
---|
249 | m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1; |
---|
250 | } |
---|
251 | |
---|
252 | } |
---|