[5789] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | #ifndef __Matrix4__ |
---|
| 30 | #define __Matrix4__ |
---|
| 31 | |
---|
| 32 | // Precompiler options |
---|
| 33 | #include "OgrePrerequisites.h" |
---|
| 34 | |
---|
| 35 | #include "OgreVector3.h" |
---|
| 36 | #include "OgreMatrix3.h" |
---|
| 37 | #include "OgreVector4.h" |
---|
| 38 | #include <ostream> |
---|
| 39 | |
---|
| 40 | namespace Ogre |
---|
| 41 | { |
---|
| 42 | /** Class encapsulating a standard 4x4 homogeneous matrix. |
---|
| 43 | @remarks |
---|
| 44 | OGRE uses column vectors when applying matrix multiplications, |
---|
| 45 | This means a vector is represented as a single column, 4-row |
---|
| 46 | matrix. This has the effect that the transformations implemented |
---|
| 47 | by the matrices happens right-to-left e.g. if vector V is to be |
---|
| 48 | transformed by M1 then M2 then M3, the calculation would be |
---|
| 49 | M3 * M2 * M1 * V. The order that matrices are concatenated is |
---|
| 50 | vital since matrix multiplication is not cummatative, i.e. you |
---|
| 51 | can get a different result if you concatenate in the wrong order. |
---|
| 52 | @par |
---|
| 53 | The use of column vectors and right-to-left ordering is the |
---|
| 54 | standard in most mathematical texts, and id the same as used in |
---|
| 55 | OpenGL. It is, however, the opposite of Direct3D, which has |
---|
| 56 | inexplicably chosen to differ from the accepted standard and uses |
---|
| 57 | row vectors and left-to-right matrix multiplication. |
---|
| 58 | @par |
---|
| 59 | OGRE deals with the differences between D3D and OpenGL etc. |
---|
| 60 | internally when operating through different render systems. OGRE |
---|
| 61 | users only need to conform to standard maths conventions, i.e. |
---|
| 62 | right-to-left matrix multiplication, (OGRE transposes matrices it |
---|
| 63 | passes to D3D to compensate). |
---|
| 64 | @par |
---|
| 65 | The generic form M * V which shows the layout of the matrix |
---|
| 66 | entries is shown below: |
---|
| 67 | <pre> |
---|
| 68 | [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x} |
---|
| 69 | | m[1][0] m[1][1] m[1][2] m[1][3] | * {y} |
---|
| 70 | | m[2][0] m[2][1] m[2][2] m[2][3] | {z} |
---|
| 71 | [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1} |
---|
| 72 | </pre> |
---|
| 73 | */ |
---|
| 74 | class _OgreExport Matrix4 |
---|
| 75 | { |
---|
| 76 | protected: |
---|
| 77 | /// The matrix entries, indexed by [row][col]. |
---|
| 78 | union { |
---|
| 79 | Real m[4][4]; |
---|
| 80 | Real _m[16]; |
---|
| 81 | }; |
---|
| 82 | public: |
---|
| 83 | /** Default constructor. |
---|
| 84 | @note |
---|
| 85 | It does <b>NOT</b> initialize the matrix for efficiency. |
---|
| 86 | */ |
---|
| 87 | inline Matrix4() |
---|
| 88 | { |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | inline Matrix4( |
---|
| 92 | Real m00, Real m01, Real m02, Real m03, |
---|
| 93 | Real m10, Real m11, Real m12, Real m13, |
---|
| 94 | Real m20, Real m21, Real m22, Real m23, |
---|
| 95 | Real m30, Real m31, Real m32, Real m33 ) |
---|
| 96 | { |
---|
| 97 | m[0][0] = m00; |
---|
| 98 | m[0][1] = m01; |
---|
| 99 | m[0][2] = m02; |
---|
| 100 | m[0][3] = m03; |
---|
| 101 | m[1][0] = m10; |
---|
| 102 | m[1][1] = m11; |
---|
| 103 | m[1][2] = m12; |
---|
| 104 | m[1][3] = m13; |
---|
| 105 | m[2][0] = m20; |
---|
| 106 | m[2][1] = m21; |
---|
| 107 | m[2][2] = m22; |
---|
| 108 | m[2][3] = m23; |
---|
| 109 | m[3][0] = m30; |
---|
| 110 | m[3][1] = m31; |
---|
| 111 | m[3][2] = m32; |
---|
| 112 | m[3][3] = m33; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix. |
---|
| 116 | */ |
---|
| 117 | |
---|
| 118 | inline Matrix4(const Matrix3& m3x3) |
---|
| 119 | { |
---|
| 120 | operator=(IDENTITY); |
---|
| 121 | operator=(m3x3); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion. |
---|
| 125 | */ |
---|
| 126 | |
---|
| 127 | inline Matrix4(const Quaternion& rot) |
---|
| 128 | { |
---|
| 129 | Matrix3 m3x3; |
---|
| 130 | rot.ToRotationMatrix(m3x3); |
---|
| 131 | operator=(IDENTITY); |
---|
| 132 | operator=(m3x3); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | inline Real* operator [] ( size_t iRow ) |
---|
| 137 | { |
---|
| 138 | assert( iRow < 4 ); |
---|
| 139 | return m[iRow]; |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | inline const Real *const operator [] ( size_t iRow ) const |
---|
| 143 | { |
---|
| 144 | assert( iRow < 4 ); |
---|
| 145 | return m[iRow]; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | inline Matrix4 concatenate(const Matrix4 &m2) const |
---|
| 149 | { |
---|
| 150 | Matrix4 r; |
---|
| 151 | r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0]; |
---|
| 152 | r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1]; |
---|
| 153 | r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2]; |
---|
| 154 | r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3]; |
---|
| 155 | |
---|
| 156 | r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0]; |
---|
| 157 | r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1]; |
---|
| 158 | r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2]; |
---|
| 159 | r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3]; |
---|
| 160 | |
---|
| 161 | r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0]; |
---|
| 162 | r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1]; |
---|
| 163 | r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2]; |
---|
| 164 | r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3]; |
---|
| 165 | |
---|
| 166 | r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0]; |
---|
| 167 | r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1]; |
---|
| 168 | r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2]; |
---|
| 169 | r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3]; |
---|
| 170 | |
---|
| 171 | return r; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | /** Matrix concatenation using '*'. |
---|
| 175 | */ |
---|
| 176 | inline Matrix4 operator * ( const Matrix4 &m2 ) const |
---|
| 177 | { |
---|
| 178 | return concatenate( m2 ); |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /** Vector transformation using '*'. |
---|
| 182 | @remarks |
---|
| 183 | Transforms the given 3-D vector by the matrix, projecting the |
---|
| 184 | result back into <i>w</i> = 1. |
---|
| 185 | @note |
---|
| 186 | This means that the initial <i>w</i> is considered to be 1.0, |
---|
| 187 | and then all the tree elements of the resulting 3-D vector are |
---|
| 188 | divided by the resulting <i>w</i>. |
---|
| 189 | */ |
---|
| 190 | inline Vector3 operator * ( const Vector3 &v ) const |
---|
| 191 | { |
---|
| 192 | Vector3 r; |
---|
| 193 | |
---|
| 194 | Real fInvW = 1.0 / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] ); |
---|
| 195 | |
---|
| 196 | r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW; |
---|
| 197 | r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW; |
---|
| 198 | r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW; |
---|
| 199 | |
---|
| 200 | return r; |
---|
| 201 | } |
---|
| 202 | inline Vector4 operator * (const Vector4& v) const |
---|
| 203 | { |
---|
| 204 | return Vector4( |
---|
| 205 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
| 206 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
| 207 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
| 208 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w |
---|
| 209 | ); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | /** Matrix addition. |
---|
| 214 | */ |
---|
| 215 | inline Matrix4 operator + ( const Matrix4 &m2 ) const |
---|
| 216 | { |
---|
| 217 | Matrix4 r; |
---|
| 218 | |
---|
| 219 | r.m[0][0] = m[0][0] + m2.m[0][0]; |
---|
| 220 | r.m[0][1] = m[0][1] + m2.m[0][1]; |
---|
| 221 | r.m[0][2] = m[0][2] + m2.m[0][2]; |
---|
| 222 | r.m[0][3] = m[0][3] + m2.m[0][3]; |
---|
| 223 | |
---|
| 224 | r.m[1][0] = m[1][0] + m2.m[1][0]; |
---|
| 225 | r.m[1][1] = m[1][1] + m2.m[1][1]; |
---|
| 226 | r.m[1][2] = m[1][2] + m2.m[1][2]; |
---|
| 227 | r.m[1][3] = m[1][3] + m2.m[1][3]; |
---|
| 228 | |
---|
| 229 | r.m[2][0] = m[2][0] + m2.m[2][0]; |
---|
| 230 | r.m[2][1] = m[2][1] + m2.m[2][1]; |
---|
| 231 | r.m[2][2] = m[2][2] + m2.m[2][2]; |
---|
| 232 | r.m[2][3] = m[2][3] + m2.m[2][3]; |
---|
| 233 | |
---|
| 234 | r.m[3][0] = m[3][0] + m2.m[3][0]; |
---|
| 235 | r.m[3][1] = m[3][1] + m2.m[3][1]; |
---|
| 236 | r.m[3][2] = m[3][2] + m2.m[3][2]; |
---|
| 237 | r.m[3][3] = m[3][3] + m2.m[3][3]; |
---|
| 238 | |
---|
| 239 | return r; |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | /** Matrix subtraction. |
---|
| 243 | */ |
---|
| 244 | inline Matrix4 operator - ( const Matrix4 &m2 ) const |
---|
| 245 | { |
---|
| 246 | Matrix4 r; |
---|
| 247 | r.m[0][0] = m[0][0] - m2.m[0][0]; |
---|
| 248 | r.m[0][1] = m[0][1] - m2.m[0][1]; |
---|
| 249 | r.m[0][2] = m[0][2] - m2.m[0][2]; |
---|
| 250 | r.m[0][3] = m[0][3] - m2.m[0][3]; |
---|
| 251 | |
---|
| 252 | r.m[1][0] = m[1][0] - m2.m[1][0]; |
---|
| 253 | r.m[1][1] = m[1][1] - m2.m[1][1]; |
---|
| 254 | r.m[1][2] = m[1][2] - m2.m[1][2]; |
---|
| 255 | r.m[1][3] = m[1][3] - m2.m[1][3]; |
---|
| 256 | |
---|
| 257 | r.m[2][0] = m[2][0] - m2.m[2][0]; |
---|
| 258 | r.m[2][1] = m[2][1] - m2.m[2][1]; |
---|
| 259 | r.m[2][2] = m[2][2] - m2.m[2][2]; |
---|
| 260 | r.m[2][3] = m[2][3] - m2.m[2][3]; |
---|
| 261 | |
---|
| 262 | r.m[3][0] = m[3][0] - m2.m[3][0]; |
---|
| 263 | r.m[3][1] = m[3][1] - m2.m[3][1]; |
---|
| 264 | r.m[3][2] = m[3][2] - m2.m[3][2]; |
---|
| 265 | r.m[3][3] = m[3][3] - m2.m[3][3]; |
---|
| 266 | |
---|
| 267 | return r; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** Tests 2 matrices for equality. |
---|
| 271 | */ |
---|
| 272 | inline bool operator == ( const Matrix4& m2 ) const |
---|
| 273 | { |
---|
| 274 | if( |
---|
| 275 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
| 276 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
| 277 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
| 278 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
| 279 | return false; |
---|
| 280 | return true; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** Tests 2 matrices for inequality. |
---|
| 284 | */ |
---|
| 285 | inline bool operator != ( const Matrix4& m2 ) const |
---|
| 286 | { |
---|
| 287 | if( |
---|
| 288 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
| 289 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
| 290 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
| 291 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
| 292 | return true; |
---|
| 293 | return false; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | /** Assignment from 3x3 matrix. |
---|
| 297 | */ |
---|
| 298 | inline void operator = ( const Matrix3& mat3 ) |
---|
| 299 | { |
---|
| 300 | m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2]; |
---|
| 301 | m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2]; |
---|
| 302 | m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2]; |
---|
| 303 | } |
---|
| 304 | |
---|
| 305 | inline Matrix4 transpose(void) const |
---|
| 306 | { |
---|
| 307 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0], |
---|
| 308 | m[0][1], m[1][1], m[2][1], m[3][1], |
---|
| 309 | m[0][2], m[1][2], m[2][2], m[3][2], |
---|
| 310 | m[0][3], m[1][3], m[2][3], m[3][3]); |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | /* |
---|
| 314 | ----------------------------------------------------------------------- |
---|
| 315 | Translation Transformation |
---|
| 316 | ----------------------------------------------------------------------- |
---|
| 317 | */ |
---|
| 318 | /** Sets the translation transformation part of the matrix. |
---|
| 319 | */ |
---|
| 320 | inline void setTrans( const Vector3& v ) |
---|
| 321 | { |
---|
| 322 | m[0][3] = v.x; |
---|
| 323 | m[1][3] = v.y; |
---|
| 324 | m[2][3] = v.z; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | /** Extracts the translation transformation part of the matrix. |
---|
| 328 | */ |
---|
| 329 | inline Vector3 getTrans() const |
---|
| 330 | { |
---|
| 331 | return Vector3(m[0][3], m[1][3], m[2][3]); |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | /** Builds a translation matrix |
---|
| 336 | */ |
---|
| 337 | inline void makeTrans( const Vector3& v ) |
---|
| 338 | { |
---|
| 339 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x; |
---|
| 340 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y; |
---|
| 341 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z; |
---|
| 342 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | inline void makeTrans( Real tx, Real ty, Real tz ) |
---|
| 346 | { |
---|
| 347 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx; |
---|
| 348 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty; |
---|
| 349 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz; |
---|
| 350 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
| 351 | } |
---|
| 352 | |
---|
| 353 | /** Gets a translation matrix. |
---|
| 354 | */ |
---|
| 355 | inline static Matrix4 getTrans( const Vector3& v ) |
---|
| 356 | { |
---|
| 357 | Matrix4 r; |
---|
| 358 | |
---|
| 359 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x; |
---|
| 360 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y; |
---|
| 361 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z; |
---|
| 362 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 363 | |
---|
| 364 | return r; |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /** Gets a translation matrix - variation for not using a vector. |
---|
| 368 | */ |
---|
| 369 | inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z ) |
---|
| 370 | { |
---|
| 371 | Matrix4 r; |
---|
| 372 | |
---|
| 373 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x; |
---|
| 374 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y; |
---|
| 375 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z; |
---|
| 376 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 377 | |
---|
| 378 | return r; |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | /* |
---|
| 382 | ----------------------------------------------------------------------- |
---|
| 383 | Scale Transformation |
---|
| 384 | ----------------------------------------------------------------------- |
---|
| 385 | */ |
---|
| 386 | /** Sets the scale part of the matrix. |
---|
| 387 | */ |
---|
| 388 | inline void setScale( const Vector3& v ) |
---|
| 389 | { |
---|
| 390 | m[0][0] = v.x; |
---|
| 391 | m[1][1] = v.y; |
---|
| 392 | m[2][2] = v.z; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** Gets a scale matrix. |
---|
| 396 | */ |
---|
| 397 | inline static Matrix4 getScale( const Vector3& v ) |
---|
| 398 | { |
---|
| 399 | Matrix4 r; |
---|
| 400 | r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
| 401 | r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
| 402 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0; |
---|
| 403 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 404 | |
---|
| 405 | return r; |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | /** Gets a scale matrix - variation for not using a vector. |
---|
| 409 | */ |
---|
| 410 | inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z ) |
---|
| 411 | { |
---|
| 412 | Matrix4 r; |
---|
| 413 | r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
| 414 | r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
| 415 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0; |
---|
| 416 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
| 417 | |
---|
| 418 | return r; |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. |
---|
| 422 | @param m3x3 Destination Matrix3 |
---|
| 423 | */ |
---|
| 424 | inline void extract3x3Matrix(Matrix3& m3x3) const |
---|
| 425 | { |
---|
| 426 | m3x3.m[0][0] = m[0][0]; |
---|
| 427 | m3x3.m[0][1] = m[0][1]; |
---|
| 428 | m3x3.m[0][2] = m[0][2]; |
---|
| 429 | m3x3.m[1][0] = m[1][0]; |
---|
| 430 | m3x3.m[1][1] = m[1][1]; |
---|
| 431 | m3x3.m[1][2] = m[1][2]; |
---|
| 432 | m3x3.m[2][0] = m[2][0]; |
---|
| 433 | m3x3.m[2][1] = m[2][1]; |
---|
| 434 | m3x3.m[2][2] = m[2][2]; |
---|
| 435 | |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | /** Determines if this matrix involves a scaling. */ |
---|
| 439 | inline bool hasScale() const |
---|
| 440 | { |
---|
| 441 | // check magnitude of column vectors (==local axes) |
---|
| 442 | Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0]; |
---|
| 443 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
| 444 | return true; |
---|
| 445 | t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1]; |
---|
| 446 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
| 447 | return true; |
---|
| 448 | t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2]; |
---|
| 449 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
| 450 | return true; |
---|
| 451 | |
---|
| 452 | return false; |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | /** Determines if this matrix involves a negative scaling. */ |
---|
| 456 | inline bool hasNegativeScale() const |
---|
| 457 | { |
---|
| 458 | return determinant() < 0; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | /** Extracts the rotation / scaling part as a quaternion from the Matrix. |
---|
| 462 | */ |
---|
| 463 | inline Quaternion extractQuaternion() const |
---|
| 464 | { |
---|
| 465 | Matrix3 m3x3; |
---|
| 466 | extract3x3Matrix(m3x3); |
---|
| 467 | return Quaternion(m3x3); |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | static const Matrix4 ZERO; |
---|
| 471 | static const Matrix4 IDENTITY; |
---|
| 472 | /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1} |
---|
| 473 | and inverts the Y. */ |
---|
| 474 | static const Matrix4 CLIPSPACE2DTOIMAGESPACE; |
---|
| 475 | |
---|
| 476 | inline Matrix4 operator*(Real scalar) const |
---|
| 477 | { |
---|
| 478 | return Matrix4( |
---|
| 479 | scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3], |
---|
| 480 | scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3], |
---|
| 481 | scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3], |
---|
| 482 | scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]); |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** Function for writing to a stream. |
---|
| 486 | */ |
---|
| 487 | inline _OgreExport friend std::ostream& operator << |
---|
| 488 | ( std::ostream& o, const Matrix4& m ) |
---|
| 489 | { |
---|
| 490 | o << "Matrix4("; |
---|
| 491 | for (size_t i = 0; i < 4; ++i) |
---|
| 492 | { |
---|
| 493 | o << " row" << (unsigned)i << "{"; |
---|
| 494 | for(size_t j = 0; j < 4; ++j) |
---|
| 495 | { |
---|
| 496 | o << m[i][j] << " "; |
---|
| 497 | } |
---|
| 498 | o << "}"; |
---|
| 499 | } |
---|
| 500 | o << ")"; |
---|
| 501 | return o; |
---|
| 502 | } |
---|
| 503 | |
---|
| 504 | Matrix4 adjoint() const; |
---|
| 505 | Real determinant() const; |
---|
| 506 | Matrix4 inverse() const; |
---|
| 507 | |
---|
| 508 | /** Building a Matrix4 from orientation / scale / position. |
---|
| 509 | @remarks |
---|
| 510 | Transform is performed in the order scale, rotate, translation, i.e. translation is independent |
---|
| 511 | of orientation axes, scale does not affect size of translation, rotation and scaling are always |
---|
| 512 | centered on the origin. |
---|
| 513 | */ |
---|
| 514 | void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
| 515 | |
---|
| 516 | /** Building an inverse Matrix4 from orientation / scale / position. |
---|
| 517 | @remarks |
---|
| 518 | As makeTransform except it build the inverse given the same data as makeTransform, so |
---|
| 519 | performing -translation, -rotate, 1/scale in that order. |
---|
| 520 | */ |
---|
| 521 | void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
| 522 | |
---|
| 523 | /** Check whether or not the matrix is affine matrix. |
---|
| 524 | @remarks |
---|
| 525 | An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), |
---|
| 526 | e.g. no projective coefficients. |
---|
| 527 | */ |
---|
| 528 | inline bool isAffine(void) const |
---|
| 529 | { |
---|
| 530 | return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1; |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | /** Returns the inverse of the affine matrix. |
---|
| 534 | @note |
---|
| 535 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 536 | */ |
---|
| 537 | Matrix4 inverseAffine(void) const; |
---|
| 538 | |
---|
| 539 | /** Concatenate two affine matrix. |
---|
| 540 | @note |
---|
| 541 | The matrices must be affine matrix. @see Matrix4::isAffine. |
---|
| 542 | */ |
---|
| 543 | inline Matrix4 concatenateAffine(const Matrix4 &m2) const |
---|
| 544 | { |
---|
| 545 | assert(isAffine() && m2.isAffine()); |
---|
| 546 | |
---|
| 547 | return Matrix4( |
---|
| 548 | m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0], |
---|
| 549 | m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1], |
---|
| 550 | m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2], |
---|
| 551 | m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3], |
---|
| 552 | |
---|
| 553 | m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0], |
---|
| 554 | m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1], |
---|
| 555 | m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2], |
---|
| 556 | m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3], |
---|
| 557 | |
---|
| 558 | m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0], |
---|
| 559 | m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1], |
---|
| 560 | m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2], |
---|
| 561 | m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3], |
---|
| 562 | |
---|
| 563 | 0, 0, 0, 1); |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | /** 3-D Vector transformation specially for affine matrix. |
---|
| 567 | @remarks |
---|
| 568 | Transforms the given 3-D vector by the matrix, projecting the |
---|
| 569 | result back into <i>w</i> = 1. |
---|
| 570 | @note |
---|
| 571 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 572 | */ |
---|
| 573 | inline Vector3 transformAffine(const Vector3& v) const |
---|
| 574 | { |
---|
| 575 | assert(isAffine()); |
---|
| 576 | |
---|
| 577 | return Vector3( |
---|
| 578 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], |
---|
| 579 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3], |
---|
| 580 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]); |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | /** 4-D Vector transformation specially for affine matrix. |
---|
| 584 | @note |
---|
| 585 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
| 586 | */ |
---|
| 587 | inline Vector4 transformAffine(const Vector4& v) const |
---|
| 588 | { |
---|
| 589 | assert(isAffine()); |
---|
| 590 | |
---|
| 591 | return Vector4( |
---|
| 592 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
| 593 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
| 594 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
| 595 | v.w); |
---|
| 596 | } |
---|
| 597 | }; |
---|
| 598 | |
---|
| 599 | /* Removed from Vector4 and made a non-member here because otherwise |
---|
| 600 | OgreMatrix4.h and OgreVector4.h have to try to include and inline each |
---|
| 601 | other, which frankly doesn't work ;) |
---|
| 602 | */ |
---|
| 603 | inline Vector4 operator * (const Vector4& v, const Matrix4& mat) |
---|
| 604 | { |
---|
| 605 | return Vector4( |
---|
| 606 | v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0], |
---|
| 607 | v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1], |
---|
| 608 | v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2], |
---|
| 609 | v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3] |
---|
| 610 | ); |
---|
| 611 | } |
---|
| 612 | |
---|
| 613 | } |
---|
| 614 | #endif |
---|