1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __Matrix4__ |
---|
30 | #define __Matrix4__ |
---|
31 | |
---|
32 | // Precompiler options |
---|
33 | #include "OgrePrerequisites.h" |
---|
34 | |
---|
35 | #include "OgreVector3.h" |
---|
36 | #include "OgreMatrix3.h" |
---|
37 | #include "OgreVector4.h" |
---|
38 | #include <ostream> |
---|
39 | |
---|
40 | namespace Ogre |
---|
41 | { |
---|
42 | /** Class encapsulating a standard 4x4 homogeneous matrix. |
---|
43 | @remarks |
---|
44 | OGRE uses column vectors when applying matrix multiplications, |
---|
45 | This means a vector is represented as a single column, 4-row |
---|
46 | matrix. This has the effect that the transformations implemented |
---|
47 | by the matrices happens right-to-left e.g. if vector V is to be |
---|
48 | transformed by M1 then M2 then M3, the calculation would be |
---|
49 | M3 * M2 * M1 * V. The order that matrices are concatenated is |
---|
50 | vital since matrix multiplication is not cummatative, i.e. you |
---|
51 | can get a different result if you concatenate in the wrong order. |
---|
52 | @par |
---|
53 | The use of column vectors and right-to-left ordering is the |
---|
54 | standard in most mathematical texts, and id the same as used in |
---|
55 | OpenGL. It is, however, the opposite of Direct3D, which has |
---|
56 | inexplicably chosen to differ from the accepted standard and uses |
---|
57 | row vectors and left-to-right matrix multiplication. |
---|
58 | @par |
---|
59 | OGRE deals with the differences between D3D and OpenGL etc. |
---|
60 | internally when operating through different render systems. OGRE |
---|
61 | users only need to conform to standard maths conventions, i.e. |
---|
62 | right-to-left matrix multiplication, (OGRE transposes matrices it |
---|
63 | passes to D3D to compensate). |
---|
64 | @par |
---|
65 | The generic form M * V which shows the layout of the matrix |
---|
66 | entries is shown below: |
---|
67 | <pre> |
---|
68 | [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x} |
---|
69 | | m[1][0] m[1][1] m[1][2] m[1][3] | * {y} |
---|
70 | | m[2][0] m[2][1] m[2][2] m[2][3] | {z} |
---|
71 | [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1} |
---|
72 | </pre> |
---|
73 | */ |
---|
74 | class _OgreExport Matrix4 |
---|
75 | { |
---|
76 | protected: |
---|
77 | /// The matrix entries, indexed by [row][col]. |
---|
78 | union { |
---|
79 | Real m[4][4]; |
---|
80 | Real _m[16]; |
---|
81 | }; |
---|
82 | public: |
---|
83 | /** Default constructor. |
---|
84 | @note |
---|
85 | It does <b>NOT</b> initialize the matrix for efficiency. |
---|
86 | */ |
---|
87 | inline Matrix4() |
---|
88 | { |
---|
89 | } |
---|
90 | |
---|
91 | inline Matrix4( |
---|
92 | Real m00, Real m01, Real m02, Real m03, |
---|
93 | Real m10, Real m11, Real m12, Real m13, |
---|
94 | Real m20, Real m21, Real m22, Real m23, |
---|
95 | Real m30, Real m31, Real m32, Real m33 ) |
---|
96 | { |
---|
97 | m[0][0] = m00; |
---|
98 | m[0][1] = m01; |
---|
99 | m[0][2] = m02; |
---|
100 | m[0][3] = m03; |
---|
101 | m[1][0] = m10; |
---|
102 | m[1][1] = m11; |
---|
103 | m[1][2] = m12; |
---|
104 | m[1][3] = m13; |
---|
105 | m[2][0] = m20; |
---|
106 | m[2][1] = m21; |
---|
107 | m[2][2] = m22; |
---|
108 | m[2][3] = m23; |
---|
109 | m[3][0] = m30; |
---|
110 | m[3][1] = m31; |
---|
111 | m[3][2] = m32; |
---|
112 | m[3][3] = m33; |
---|
113 | } |
---|
114 | |
---|
115 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix. |
---|
116 | */ |
---|
117 | |
---|
118 | inline Matrix4(const Matrix3& m3x3) |
---|
119 | { |
---|
120 | operator=(IDENTITY); |
---|
121 | operator=(m3x3); |
---|
122 | } |
---|
123 | |
---|
124 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion. |
---|
125 | */ |
---|
126 | |
---|
127 | inline Matrix4(const Quaternion& rot) |
---|
128 | { |
---|
129 | Matrix3 m3x3; |
---|
130 | rot.ToRotationMatrix(m3x3); |
---|
131 | operator=(IDENTITY); |
---|
132 | operator=(m3x3); |
---|
133 | } |
---|
134 | |
---|
135 | |
---|
136 | inline Real* operator [] ( size_t iRow ) |
---|
137 | { |
---|
138 | assert( iRow < 4 ); |
---|
139 | return m[iRow]; |
---|
140 | } |
---|
141 | |
---|
142 | inline const Real *const operator [] ( size_t iRow ) const |
---|
143 | { |
---|
144 | assert( iRow < 4 ); |
---|
145 | return m[iRow]; |
---|
146 | } |
---|
147 | |
---|
148 | inline Matrix4 concatenate(const Matrix4 &m2) const |
---|
149 | { |
---|
150 | Matrix4 r; |
---|
151 | r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0]; |
---|
152 | r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1]; |
---|
153 | r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2]; |
---|
154 | r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3]; |
---|
155 | |
---|
156 | r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0]; |
---|
157 | r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1]; |
---|
158 | r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2]; |
---|
159 | r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3]; |
---|
160 | |
---|
161 | r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0]; |
---|
162 | r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1]; |
---|
163 | r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2]; |
---|
164 | r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3]; |
---|
165 | |
---|
166 | r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0]; |
---|
167 | r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1]; |
---|
168 | r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2]; |
---|
169 | r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3]; |
---|
170 | |
---|
171 | return r; |
---|
172 | } |
---|
173 | |
---|
174 | /** Matrix concatenation using '*'. |
---|
175 | */ |
---|
176 | inline Matrix4 operator * ( const Matrix4 &m2 ) const |
---|
177 | { |
---|
178 | return concatenate( m2 ); |
---|
179 | } |
---|
180 | |
---|
181 | /** Vector transformation using '*'. |
---|
182 | @remarks |
---|
183 | Transforms the given 3-D vector by the matrix, projecting the |
---|
184 | result back into <i>w</i> = 1. |
---|
185 | @note |
---|
186 | This means that the initial <i>w</i> is considered to be 1.0, |
---|
187 | and then all the tree elements of the resulting 3-D vector are |
---|
188 | divided by the resulting <i>w</i>. |
---|
189 | */ |
---|
190 | inline Vector3 operator * ( const Vector3 &v ) const |
---|
191 | { |
---|
192 | Vector3 r; |
---|
193 | |
---|
194 | Real fInvW = 1.0 / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] ); |
---|
195 | |
---|
196 | r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW; |
---|
197 | r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW; |
---|
198 | r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW; |
---|
199 | |
---|
200 | return r; |
---|
201 | } |
---|
202 | inline Vector4 operator * (const Vector4& v) const |
---|
203 | { |
---|
204 | return Vector4( |
---|
205 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
206 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
207 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
208 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w |
---|
209 | ); |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | /** Matrix addition. |
---|
214 | */ |
---|
215 | inline Matrix4 operator + ( const Matrix4 &m2 ) const |
---|
216 | { |
---|
217 | Matrix4 r; |
---|
218 | |
---|
219 | r.m[0][0] = m[0][0] + m2.m[0][0]; |
---|
220 | r.m[0][1] = m[0][1] + m2.m[0][1]; |
---|
221 | r.m[0][2] = m[0][2] + m2.m[0][2]; |
---|
222 | r.m[0][3] = m[0][3] + m2.m[0][3]; |
---|
223 | |
---|
224 | r.m[1][0] = m[1][0] + m2.m[1][0]; |
---|
225 | r.m[1][1] = m[1][1] + m2.m[1][1]; |
---|
226 | r.m[1][2] = m[1][2] + m2.m[1][2]; |
---|
227 | r.m[1][3] = m[1][3] + m2.m[1][3]; |
---|
228 | |
---|
229 | r.m[2][0] = m[2][0] + m2.m[2][0]; |
---|
230 | r.m[2][1] = m[2][1] + m2.m[2][1]; |
---|
231 | r.m[2][2] = m[2][2] + m2.m[2][2]; |
---|
232 | r.m[2][3] = m[2][3] + m2.m[2][3]; |
---|
233 | |
---|
234 | r.m[3][0] = m[3][0] + m2.m[3][0]; |
---|
235 | r.m[3][1] = m[3][1] + m2.m[3][1]; |
---|
236 | r.m[3][2] = m[3][2] + m2.m[3][2]; |
---|
237 | r.m[3][3] = m[3][3] + m2.m[3][3]; |
---|
238 | |
---|
239 | return r; |
---|
240 | } |
---|
241 | |
---|
242 | /** Matrix subtraction. |
---|
243 | */ |
---|
244 | inline Matrix4 operator - ( const Matrix4 &m2 ) const |
---|
245 | { |
---|
246 | Matrix4 r; |
---|
247 | r.m[0][0] = m[0][0] - m2.m[0][0]; |
---|
248 | r.m[0][1] = m[0][1] - m2.m[0][1]; |
---|
249 | r.m[0][2] = m[0][2] - m2.m[0][2]; |
---|
250 | r.m[0][3] = m[0][3] - m2.m[0][3]; |
---|
251 | |
---|
252 | r.m[1][0] = m[1][0] - m2.m[1][0]; |
---|
253 | r.m[1][1] = m[1][1] - m2.m[1][1]; |
---|
254 | r.m[1][2] = m[1][2] - m2.m[1][2]; |
---|
255 | r.m[1][3] = m[1][3] - m2.m[1][3]; |
---|
256 | |
---|
257 | r.m[2][0] = m[2][0] - m2.m[2][0]; |
---|
258 | r.m[2][1] = m[2][1] - m2.m[2][1]; |
---|
259 | r.m[2][2] = m[2][2] - m2.m[2][2]; |
---|
260 | r.m[2][3] = m[2][3] - m2.m[2][3]; |
---|
261 | |
---|
262 | r.m[3][0] = m[3][0] - m2.m[3][0]; |
---|
263 | r.m[3][1] = m[3][1] - m2.m[3][1]; |
---|
264 | r.m[3][2] = m[3][2] - m2.m[3][2]; |
---|
265 | r.m[3][3] = m[3][3] - m2.m[3][3]; |
---|
266 | |
---|
267 | return r; |
---|
268 | } |
---|
269 | |
---|
270 | /** Tests 2 matrices for equality. |
---|
271 | */ |
---|
272 | inline bool operator == ( const Matrix4& m2 ) const |
---|
273 | { |
---|
274 | if( |
---|
275 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
276 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
277 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
278 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
279 | return false; |
---|
280 | return true; |
---|
281 | } |
---|
282 | |
---|
283 | /** Tests 2 matrices for inequality. |
---|
284 | */ |
---|
285 | inline bool operator != ( const Matrix4& m2 ) const |
---|
286 | { |
---|
287 | if( |
---|
288 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] || |
---|
289 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] || |
---|
290 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] || |
---|
291 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] ) |
---|
292 | return true; |
---|
293 | return false; |
---|
294 | } |
---|
295 | |
---|
296 | /** Assignment from 3x3 matrix. |
---|
297 | */ |
---|
298 | inline void operator = ( const Matrix3& mat3 ) |
---|
299 | { |
---|
300 | m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2]; |
---|
301 | m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2]; |
---|
302 | m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2]; |
---|
303 | } |
---|
304 | |
---|
305 | inline Matrix4 transpose(void) const |
---|
306 | { |
---|
307 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0], |
---|
308 | m[0][1], m[1][1], m[2][1], m[3][1], |
---|
309 | m[0][2], m[1][2], m[2][2], m[3][2], |
---|
310 | m[0][3], m[1][3], m[2][3], m[3][3]); |
---|
311 | } |
---|
312 | |
---|
313 | /* |
---|
314 | ----------------------------------------------------------------------- |
---|
315 | Translation Transformation |
---|
316 | ----------------------------------------------------------------------- |
---|
317 | */ |
---|
318 | /** Sets the translation transformation part of the matrix. |
---|
319 | */ |
---|
320 | inline void setTrans( const Vector3& v ) |
---|
321 | { |
---|
322 | m[0][3] = v.x; |
---|
323 | m[1][3] = v.y; |
---|
324 | m[2][3] = v.z; |
---|
325 | } |
---|
326 | |
---|
327 | /** Extracts the translation transformation part of the matrix. |
---|
328 | */ |
---|
329 | inline Vector3 getTrans() const |
---|
330 | { |
---|
331 | return Vector3(m[0][3], m[1][3], m[2][3]); |
---|
332 | } |
---|
333 | |
---|
334 | |
---|
335 | /** Builds a translation matrix |
---|
336 | */ |
---|
337 | inline void makeTrans( const Vector3& v ) |
---|
338 | { |
---|
339 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x; |
---|
340 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y; |
---|
341 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z; |
---|
342 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
343 | } |
---|
344 | |
---|
345 | inline void makeTrans( Real tx, Real ty, Real tz ) |
---|
346 | { |
---|
347 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx; |
---|
348 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty; |
---|
349 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz; |
---|
350 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0; |
---|
351 | } |
---|
352 | |
---|
353 | /** Gets a translation matrix. |
---|
354 | */ |
---|
355 | inline static Matrix4 getTrans( const Vector3& v ) |
---|
356 | { |
---|
357 | Matrix4 r; |
---|
358 | |
---|
359 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x; |
---|
360 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y; |
---|
361 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z; |
---|
362 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
363 | |
---|
364 | return r; |
---|
365 | } |
---|
366 | |
---|
367 | /** Gets a translation matrix - variation for not using a vector. |
---|
368 | */ |
---|
369 | inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z ) |
---|
370 | { |
---|
371 | Matrix4 r; |
---|
372 | |
---|
373 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x; |
---|
374 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y; |
---|
375 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z; |
---|
376 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
377 | |
---|
378 | return r; |
---|
379 | } |
---|
380 | |
---|
381 | /* |
---|
382 | ----------------------------------------------------------------------- |
---|
383 | Scale Transformation |
---|
384 | ----------------------------------------------------------------------- |
---|
385 | */ |
---|
386 | /** Sets the scale part of the matrix. |
---|
387 | */ |
---|
388 | inline void setScale( const Vector3& v ) |
---|
389 | { |
---|
390 | m[0][0] = v.x; |
---|
391 | m[1][1] = v.y; |
---|
392 | m[2][2] = v.z; |
---|
393 | } |
---|
394 | |
---|
395 | /** Gets a scale matrix. |
---|
396 | */ |
---|
397 | inline static Matrix4 getScale( const Vector3& v ) |
---|
398 | { |
---|
399 | Matrix4 r; |
---|
400 | r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
401 | r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
402 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0; |
---|
403 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
404 | |
---|
405 | return r; |
---|
406 | } |
---|
407 | |
---|
408 | /** Gets a scale matrix - variation for not using a vector. |
---|
409 | */ |
---|
410 | inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z ) |
---|
411 | { |
---|
412 | Matrix4 r; |
---|
413 | r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0; |
---|
414 | r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0; |
---|
415 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0; |
---|
416 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0; |
---|
417 | |
---|
418 | return r; |
---|
419 | } |
---|
420 | |
---|
421 | /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. |
---|
422 | @param m3x3 Destination Matrix3 |
---|
423 | */ |
---|
424 | inline void extract3x3Matrix(Matrix3& m3x3) const |
---|
425 | { |
---|
426 | m3x3.m[0][0] = m[0][0]; |
---|
427 | m3x3.m[0][1] = m[0][1]; |
---|
428 | m3x3.m[0][2] = m[0][2]; |
---|
429 | m3x3.m[1][0] = m[1][0]; |
---|
430 | m3x3.m[1][1] = m[1][1]; |
---|
431 | m3x3.m[1][2] = m[1][2]; |
---|
432 | m3x3.m[2][0] = m[2][0]; |
---|
433 | m3x3.m[2][1] = m[2][1]; |
---|
434 | m3x3.m[2][2] = m[2][2]; |
---|
435 | |
---|
436 | } |
---|
437 | |
---|
438 | /** Determines if this matrix involves a scaling. */ |
---|
439 | inline bool hasScale() const |
---|
440 | { |
---|
441 | // check magnitude of column vectors (==local axes) |
---|
442 | Real t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0]; |
---|
443 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
444 | return true; |
---|
445 | t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1]; |
---|
446 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
447 | return true; |
---|
448 | t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2]; |
---|
449 | if (!Math::RealEqual(t, 1.0, 1e-04)) |
---|
450 | return true; |
---|
451 | |
---|
452 | return false; |
---|
453 | } |
---|
454 | |
---|
455 | /** Determines if this matrix involves a negative scaling. */ |
---|
456 | inline bool hasNegativeScale() const |
---|
457 | { |
---|
458 | return determinant() < 0; |
---|
459 | } |
---|
460 | |
---|
461 | /** Extracts the rotation / scaling part as a quaternion from the Matrix. |
---|
462 | */ |
---|
463 | inline Quaternion extractQuaternion() const |
---|
464 | { |
---|
465 | Matrix3 m3x3; |
---|
466 | extract3x3Matrix(m3x3); |
---|
467 | return Quaternion(m3x3); |
---|
468 | } |
---|
469 | |
---|
470 | static const Matrix4 ZERO; |
---|
471 | static const Matrix4 IDENTITY; |
---|
472 | /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1} |
---|
473 | and inverts the Y. */ |
---|
474 | static const Matrix4 CLIPSPACE2DTOIMAGESPACE; |
---|
475 | |
---|
476 | inline Matrix4 operator*(Real scalar) const |
---|
477 | { |
---|
478 | return Matrix4( |
---|
479 | scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3], |
---|
480 | scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3], |
---|
481 | scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3], |
---|
482 | scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]); |
---|
483 | } |
---|
484 | |
---|
485 | /** Function for writing to a stream. |
---|
486 | */ |
---|
487 | inline _OgreExport friend std::ostream& operator << |
---|
488 | ( std::ostream& o, const Matrix4& m ) |
---|
489 | { |
---|
490 | o << "Matrix4("; |
---|
491 | for (size_t i = 0; i < 4; ++i) |
---|
492 | { |
---|
493 | o << " row" << (unsigned)i << "{"; |
---|
494 | for(size_t j = 0; j < 4; ++j) |
---|
495 | { |
---|
496 | o << m[i][j] << " "; |
---|
497 | } |
---|
498 | o << "}"; |
---|
499 | } |
---|
500 | o << ")"; |
---|
501 | return o; |
---|
502 | } |
---|
503 | |
---|
504 | Matrix4 adjoint() const; |
---|
505 | Real determinant() const; |
---|
506 | Matrix4 inverse() const; |
---|
507 | |
---|
508 | /** Building a Matrix4 from orientation / scale / position. |
---|
509 | @remarks |
---|
510 | Transform is performed in the order scale, rotate, translation, i.e. translation is independent |
---|
511 | of orientation axes, scale does not affect size of translation, rotation and scaling are always |
---|
512 | centered on the origin. |
---|
513 | */ |
---|
514 | void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
515 | |
---|
516 | /** Building an inverse Matrix4 from orientation / scale / position. |
---|
517 | @remarks |
---|
518 | As makeTransform except it build the inverse given the same data as makeTransform, so |
---|
519 | performing -translation, -rotate, 1/scale in that order. |
---|
520 | */ |
---|
521 | void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation); |
---|
522 | |
---|
523 | /** Check whether or not the matrix is affine matrix. |
---|
524 | @remarks |
---|
525 | An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), |
---|
526 | e.g. no projective coefficients. |
---|
527 | */ |
---|
528 | inline bool isAffine(void) const |
---|
529 | { |
---|
530 | return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1; |
---|
531 | } |
---|
532 | |
---|
533 | /** Returns the inverse of the affine matrix. |
---|
534 | @note |
---|
535 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
536 | */ |
---|
537 | Matrix4 inverseAffine(void) const; |
---|
538 | |
---|
539 | /** Concatenate two affine matrix. |
---|
540 | @note |
---|
541 | The matrices must be affine matrix. @see Matrix4::isAffine. |
---|
542 | */ |
---|
543 | inline Matrix4 concatenateAffine(const Matrix4 &m2) const |
---|
544 | { |
---|
545 | assert(isAffine() && m2.isAffine()); |
---|
546 | |
---|
547 | return Matrix4( |
---|
548 | m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0], |
---|
549 | m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1], |
---|
550 | m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2], |
---|
551 | m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3], |
---|
552 | |
---|
553 | m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0], |
---|
554 | m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1], |
---|
555 | m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2], |
---|
556 | m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3], |
---|
557 | |
---|
558 | m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0], |
---|
559 | m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1], |
---|
560 | m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2], |
---|
561 | m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3], |
---|
562 | |
---|
563 | 0, 0, 0, 1); |
---|
564 | } |
---|
565 | |
---|
566 | /** 3-D Vector transformation specially for affine matrix. |
---|
567 | @remarks |
---|
568 | Transforms the given 3-D vector by the matrix, projecting the |
---|
569 | result back into <i>w</i> = 1. |
---|
570 | @note |
---|
571 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
572 | */ |
---|
573 | inline Vector3 transformAffine(const Vector3& v) const |
---|
574 | { |
---|
575 | assert(isAffine()); |
---|
576 | |
---|
577 | return Vector3( |
---|
578 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], |
---|
579 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3], |
---|
580 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]); |
---|
581 | } |
---|
582 | |
---|
583 | /** 4-D Vector transformation specially for affine matrix. |
---|
584 | @note |
---|
585 | The matrix must be an affine matrix. @see Matrix4::isAffine. |
---|
586 | */ |
---|
587 | inline Vector4 transformAffine(const Vector4& v) const |
---|
588 | { |
---|
589 | assert(isAffine()); |
---|
590 | |
---|
591 | return Vector4( |
---|
592 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, |
---|
593 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w, |
---|
594 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w, |
---|
595 | v.w); |
---|
596 | } |
---|
597 | }; |
---|
598 | |
---|
599 | /* Removed from Vector4 and made a non-member here because otherwise |
---|
600 | OgreMatrix4.h and OgreVector4.h have to try to include and inline each |
---|
601 | other, which frankly doesn't work ;) |
---|
602 | */ |
---|
603 | inline Vector4 operator * (const Vector4& v, const Matrix4& mat) |
---|
604 | { |
---|
605 | return Vector4( |
---|
606 | v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0], |
---|
607 | v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1], |
---|
608 | v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2], |
---|
609 | v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3] |
---|
610 | ); |
---|
611 | } |
---|
612 | |
---|
613 | } |
---|
614 | #endif |
---|