[5789] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | #ifndef __Vector2_H__ |
---|
| 30 | #define __Vector2_H__ |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | #include "OgrePrerequisites.h" |
---|
| 34 | #include "OgreMath.h" |
---|
| 35 | #include <ostream> |
---|
| 36 | |
---|
| 37 | namespace Ogre |
---|
| 38 | { |
---|
| 39 | |
---|
| 40 | /** Standard 2-dimensional vector. |
---|
| 41 | @remarks |
---|
| 42 | A direction in 2D space represented as distances along the 2 |
---|
| 43 | orthogonal axes (x, y). Note that positions, directions and |
---|
| 44 | scaling factors can be represented by a vector, depending on how |
---|
| 45 | you interpret the values. |
---|
| 46 | */ |
---|
| 47 | class _OgreExport Vector2 |
---|
| 48 | { |
---|
| 49 | public: |
---|
| 50 | Real x, y; |
---|
| 51 | |
---|
| 52 | public: |
---|
| 53 | inline Vector2() |
---|
| 54 | { |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | inline Vector2(const Real fX, const Real fY ) |
---|
| 58 | : x( fX ), y( fY ) |
---|
| 59 | { |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | inline explicit Vector2( const Real scaler ) |
---|
| 63 | : x( scaler), y( scaler ) |
---|
| 64 | { |
---|
| 65 | } |
---|
| 66 | |
---|
| 67 | inline explicit Vector2( const Real afCoordinate[2] ) |
---|
| 68 | : x( afCoordinate[0] ), |
---|
| 69 | y( afCoordinate[1] ) |
---|
| 70 | { |
---|
| 71 | } |
---|
| 72 | |
---|
| 73 | inline explicit Vector2( const int afCoordinate[2] ) |
---|
| 74 | { |
---|
| 75 | x = (Real)afCoordinate[0]; |
---|
| 76 | y = (Real)afCoordinate[1]; |
---|
| 77 | } |
---|
| 78 | |
---|
| 79 | inline explicit Vector2( Real* const r ) |
---|
| 80 | : x( r[0] ), y( r[1] ) |
---|
| 81 | { |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | inline Real operator [] ( const size_t i ) const |
---|
| 85 | { |
---|
| 86 | assert( i < 2 ); |
---|
| 87 | |
---|
| 88 | return *(&x+i); |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | inline Real& operator [] ( const size_t i ) |
---|
| 92 | { |
---|
| 93 | assert( i < 2 ); |
---|
| 94 | |
---|
| 95 | return *(&x+i); |
---|
| 96 | } |
---|
| 97 | |
---|
| 98 | /// Pointer accessor for direct copying |
---|
| 99 | inline Real* ptr() |
---|
| 100 | { |
---|
| 101 | return &x; |
---|
| 102 | } |
---|
| 103 | /// Pointer accessor for direct copying |
---|
| 104 | inline const Real* ptr() const |
---|
| 105 | { |
---|
| 106 | return &x; |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | /** Assigns the value of the other vector. |
---|
| 110 | @param |
---|
| 111 | rkVector The other vector |
---|
| 112 | */ |
---|
| 113 | inline Vector2& operator = ( const Vector2& rkVector ) |
---|
| 114 | { |
---|
| 115 | x = rkVector.x; |
---|
| 116 | y = rkVector.y; |
---|
| 117 | |
---|
| 118 | return *this; |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | inline Vector2& operator = ( const Real fScalar) |
---|
| 122 | { |
---|
| 123 | x = fScalar; |
---|
| 124 | y = fScalar; |
---|
| 125 | |
---|
| 126 | return *this; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | inline bool operator == ( const Vector2& rkVector ) const |
---|
| 130 | { |
---|
| 131 | return ( x == rkVector.x && y == rkVector.y ); |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | inline bool operator != ( const Vector2& rkVector ) const |
---|
| 135 | { |
---|
| 136 | return ( x != rkVector.x || y != rkVector.y ); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | // arithmetic operations |
---|
| 140 | inline Vector2 operator + ( const Vector2& rkVector ) const |
---|
| 141 | { |
---|
| 142 | return Vector2( |
---|
| 143 | x + rkVector.x, |
---|
| 144 | y + rkVector.y); |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | inline Vector2 operator - ( const Vector2& rkVector ) const |
---|
| 148 | { |
---|
| 149 | return Vector2( |
---|
| 150 | x - rkVector.x, |
---|
| 151 | y - rkVector.y); |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | inline Vector2 operator * ( const Real fScalar ) const |
---|
| 155 | { |
---|
| 156 | return Vector2( |
---|
| 157 | x * fScalar, |
---|
| 158 | y * fScalar); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | inline Vector2 operator * ( const Vector2& rhs) const |
---|
| 162 | { |
---|
| 163 | return Vector2( |
---|
| 164 | x * rhs.x, |
---|
| 165 | y * rhs.y); |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | inline Vector2 operator / ( const Real fScalar ) const |
---|
| 169 | { |
---|
| 170 | assert( fScalar != 0.0 ); |
---|
| 171 | |
---|
| 172 | Real fInv = 1.0 / fScalar; |
---|
| 173 | |
---|
| 174 | return Vector2( |
---|
| 175 | x * fInv, |
---|
| 176 | y * fInv); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | inline Vector2 operator / ( const Vector2& rhs) const |
---|
| 180 | { |
---|
| 181 | return Vector2( |
---|
| 182 | x / rhs.x, |
---|
| 183 | y / rhs.y); |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | inline const Vector2& operator + () const |
---|
| 187 | { |
---|
| 188 | return *this; |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | inline Vector2 operator - () const |
---|
| 192 | { |
---|
| 193 | return Vector2(-x, -y); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | // overloaded operators to help Vector2 |
---|
| 197 | inline friend Vector2 operator * ( const Real fScalar, const Vector2& rkVector ) |
---|
| 198 | { |
---|
| 199 | return Vector2( |
---|
| 200 | fScalar * rkVector.x, |
---|
| 201 | fScalar * rkVector.y); |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | inline friend Vector2 operator / ( const Real fScalar, const Vector2& rkVector ) |
---|
| 205 | { |
---|
| 206 | return Vector2( |
---|
| 207 | fScalar / rkVector.x, |
---|
| 208 | fScalar / rkVector.y); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | inline friend Vector2 operator + (const Vector2& lhs, const Real rhs) |
---|
| 212 | { |
---|
| 213 | return Vector2( |
---|
| 214 | lhs.x + rhs, |
---|
| 215 | lhs.y + rhs); |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | inline friend Vector2 operator + (const Real lhs, const Vector2& rhs) |
---|
| 219 | { |
---|
| 220 | return Vector2( |
---|
| 221 | lhs + rhs.x, |
---|
| 222 | lhs + rhs.y); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | inline friend Vector2 operator - (const Vector2& lhs, const Real rhs) |
---|
| 226 | { |
---|
| 227 | return Vector2( |
---|
| 228 | lhs.x - rhs, |
---|
| 229 | lhs.y - rhs); |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | inline friend Vector2 operator - (const Real lhs, const Vector2& rhs) |
---|
| 233 | { |
---|
| 234 | return Vector2( |
---|
| 235 | lhs - rhs.x, |
---|
| 236 | lhs - rhs.y); |
---|
| 237 | } |
---|
| 238 | // arithmetic updates |
---|
| 239 | inline Vector2& operator += ( const Vector2& rkVector ) |
---|
| 240 | { |
---|
| 241 | x += rkVector.x; |
---|
| 242 | y += rkVector.y; |
---|
| 243 | |
---|
| 244 | return *this; |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | inline Vector2& operator += ( const Real fScaler ) |
---|
| 248 | { |
---|
| 249 | x += fScaler; |
---|
| 250 | y += fScaler; |
---|
| 251 | |
---|
| 252 | return *this; |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | inline Vector2& operator -= ( const Vector2& rkVector ) |
---|
| 256 | { |
---|
| 257 | x -= rkVector.x; |
---|
| 258 | y -= rkVector.y; |
---|
| 259 | |
---|
| 260 | return *this; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | inline Vector2& operator -= ( const Real fScaler ) |
---|
| 264 | { |
---|
| 265 | x -= fScaler; |
---|
| 266 | y -= fScaler; |
---|
| 267 | |
---|
| 268 | return *this; |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | inline Vector2& operator *= ( const Real fScalar ) |
---|
| 272 | { |
---|
| 273 | x *= fScalar; |
---|
| 274 | y *= fScalar; |
---|
| 275 | |
---|
| 276 | return *this; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | inline Vector2& operator *= ( const Vector2& rkVector ) |
---|
| 280 | { |
---|
| 281 | x *= rkVector.x; |
---|
| 282 | y *= rkVector.y; |
---|
| 283 | |
---|
| 284 | return *this; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | inline Vector2& operator /= ( const Real fScalar ) |
---|
| 288 | { |
---|
| 289 | assert( fScalar != 0.0 ); |
---|
| 290 | |
---|
| 291 | Real fInv = 1.0 / fScalar; |
---|
| 292 | |
---|
| 293 | x *= fInv; |
---|
| 294 | y *= fInv; |
---|
| 295 | |
---|
| 296 | return *this; |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | inline Vector2& operator /= ( const Vector2& rkVector ) |
---|
| 300 | { |
---|
| 301 | x /= rkVector.x; |
---|
| 302 | y /= rkVector.y; |
---|
| 303 | |
---|
| 304 | return *this; |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | /** Returns the length (magnitude) of the vector. |
---|
| 308 | @warning |
---|
| 309 | This operation requires a square root and is expensive in |
---|
| 310 | terms of CPU operations. If you don't need to know the exact |
---|
| 311 | length (e.g. for just comparing lengths) use squaredLength() |
---|
| 312 | instead. |
---|
| 313 | */ |
---|
| 314 | inline Real length () const |
---|
| 315 | { |
---|
| 316 | return Math::Sqrt( x * x + y * y ); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | /** Returns the square of the length(magnitude) of the vector. |
---|
| 320 | @remarks |
---|
| 321 | This method is for efficiency - calculating the actual |
---|
| 322 | length of a vector requires a square root, which is expensive |
---|
| 323 | in terms of the operations required. This method returns the |
---|
| 324 | square of the length of the vector, i.e. the same as the |
---|
| 325 | length but before the square root is taken. Use this if you |
---|
| 326 | want to find the longest / shortest vector without incurring |
---|
| 327 | the square root. |
---|
| 328 | */ |
---|
| 329 | inline Real squaredLength () const |
---|
| 330 | { |
---|
| 331 | return x * x + y * y; |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | /** Calculates the dot (scalar) product of this vector with another. |
---|
| 335 | @remarks |
---|
| 336 | The dot product can be used to calculate the angle between 2 |
---|
| 337 | vectors. If both are unit vectors, the dot product is the |
---|
| 338 | cosine of the angle; otherwise the dot product must be |
---|
| 339 | divided by the product of the lengths of both vectors to get |
---|
| 340 | the cosine of the angle. This result can further be used to |
---|
| 341 | calculate the distance of a point from a plane. |
---|
| 342 | @param |
---|
| 343 | vec Vector with which to calculate the dot product (together |
---|
| 344 | with this one). |
---|
| 345 | @returns |
---|
| 346 | A float representing the dot product value. |
---|
| 347 | */ |
---|
| 348 | inline Real dotProduct(const Vector2& vec) const |
---|
| 349 | { |
---|
| 350 | return x * vec.x + y * vec.y; |
---|
| 351 | } |
---|
| 352 | |
---|
| 353 | /** Normalises the vector. |
---|
| 354 | @remarks |
---|
| 355 | This method normalises the vector such that it's |
---|
| 356 | length / magnitude is 1. The result is called a unit vector. |
---|
| 357 | @note |
---|
| 358 | This function will not crash for zero-sized vectors, but there |
---|
| 359 | will be no changes made to their components. |
---|
| 360 | @returns The previous length of the vector. |
---|
| 361 | */ |
---|
| 362 | inline Real normalise() |
---|
| 363 | { |
---|
| 364 | Real fLength = Math::Sqrt( x * x + y * y); |
---|
| 365 | |
---|
| 366 | // Will also work for zero-sized vectors, but will change nothing |
---|
| 367 | if ( fLength > 1e-08 ) |
---|
| 368 | { |
---|
| 369 | Real fInvLength = 1.0 / fLength; |
---|
| 370 | x *= fInvLength; |
---|
| 371 | y *= fInvLength; |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | return fLength; |
---|
| 375 | } |
---|
| 376 | |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | /** Returns a vector at a point half way between this and the passed |
---|
| 380 | in vector. |
---|
| 381 | */ |
---|
| 382 | inline Vector2 midPoint( const Vector2& vec ) const |
---|
| 383 | { |
---|
| 384 | return Vector2( |
---|
| 385 | ( x + vec.x ) * 0.5, |
---|
| 386 | ( y + vec.y ) * 0.5 ); |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | /** Returns true if the vector's scalar components are all greater |
---|
| 390 | that the ones of the vector it is compared against. |
---|
| 391 | */ |
---|
| 392 | inline bool operator < ( const Vector2& rhs ) const |
---|
| 393 | { |
---|
| 394 | if( x < rhs.x && y < rhs.y ) |
---|
| 395 | return true; |
---|
| 396 | return false; |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | /** Returns true if the vector's scalar components are all smaller |
---|
| 400 | that the ones of the vector it is compared against. |
---|
| 401 | */ |
---|
| 402 | inline bool operator > ( const Vector2& rhs ) const |
---|
| 403 | { |
---|
| 404 | if( x > rhs.x && y > rhs.y ) |
---|
| 405 | return true; |
---|
| 406 | return false; |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | /** Sets this vector's components to the minimum of its own and the |
---|
| 410 | ones of the passed in vector. |
---|
| 411 | @remarks |
---|
| 412 | 'Minimum' in this case means the combination of the lowest |
---|
| 413 | value of x, y and z from both vectors. Lowest is taken just |
---|
| 414 | numerically, not magnitude, so -1 < 0. |
---|
| 415 | */ |
---|
| 416 | inline void makeFloor( const Vector2& cmp ) |
---|
| 417 | { |
---|
| 418 | if( cmp.x < x ) x = cmp.x; |
---|
| 419 | if( cmp.y < y ) y = cmp.y; |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | /** Sets this vector's components to the maximum of its own and the |
---|
| 423 | ones of the passed in vector. |
---|
| 424 | @remarks |
---|
| 425 | 'Maximum' in this case means the combination of the highest |
---|
| 426 | value of x, y and z from both vectors. Highest is taken just |
---|
| 427 | numerically, not magnitude, so 1 > -3. |
---|
| 428 | */ |
---|
| 429 | inline void makeCeil( const Vector2& cmp ) |
---|
| 430 | { |
---|
| 431 | if( cmp.x > x ) x = cmp.x; |
---|
| 432 | if( cmp.y > y ) y = cmp.y; |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** Generates a vector perpendicular to this vector (eg an 'up' vector). |
---|
| 436 | @remarks |
---|
| 437 | This method will return a vector which is perpendicular to this |
---|
| 438 | vector. There are an infinite number of possibilities but this |
---|
| 439 | method will guarantee to generate one of them. If you need more |
---|
| 440 | control you should use the Quaternion class. |
---|
| 441 | */ |
---|
| 442 | inline Vector2 perpendicular(void) const |
---|
| 443 | { |
---|
| 444 | return Vector2 (-y, x); |
---|
| 445 | } |
---|
| 446 | /** Calculates the 2 dimensional cross-product of 2 vectors, which results |
---|
| 447 | in a single floating point value which is 2 times the area of the triangle. |
---|
| 448 | */ |
---|
| 449 | inline Real crossProduct( const Vector2& rkVector ) const |
---|
| 450 | { |
---|
| 451 | return x * rkVector.y - y * rkVector.x; |
---|
| 452 | } |
---|
| 453 | /** Generates a new random vector which deviates from this vector by a |
---|
| 454 | given angle in a random direction. |
---|
| 455 | @remarks |
---|
| 456 | This method assumes that the random number generator has already |
---|
| 457 | been seeded appropriately. |
---|
| 458 | @param |
---|
| 459 | angle The angle at which to deviate in radians |
---|
| 460 | @param |
---|
| 461 | up Any vector perpendicular to this one (which could generated |
---|
| 462 | by cross-product of this vector and any other non-colinear |
---|
| 463 | vector). If you choose not to provide this the function will |
---|
| 464 | derive one on it's own, however if you provide one yourself the |
---|
| 465 | function will be faster (this allows you to reuse up vectors if |
---|
| 466 | you call this method more than once) |
---|
| 467 | @returns |
---|
| 468 | A random vector which deviates from this vector by angle. This |
---|
| 469 | vector will not be normalised, normalise it if you wish |
---|
| 470 | afterwards. |
---|
| 471 | */ |
---|
| 472 | inline Vector2 randomDeviant( |
---|
| 473 | Real angle) const |
---|
| 474 | { |
---|
| 475 | |
---|
| 476 | angle *= Math::UnitRandom() * Math::TWO_PI; |
---|
| 477 | Real cosa = cos(angle); |
---|
| 478 | Real sina = sin(angle); |
---|
| 479 | return Vector2(cosa * x - sina * y, |
---|
| 480 | sina * x + cosa * y); |
---|
| 481 | } |
---|
| 482 | |
---|
| 483 | /** Returns true if this vector is zero length. */ |
---|
| 484 | inline bool isZeroLength(void) const |
---|
| 485 | { |
---|
| 486 | Real sqlen = (x * x) + (y * y); |
---|
| 487 | return (sqlen < (1e-06 * 1e-06)); |
---|
| 488 | |
---|
| 489 | } |
---|
| 490 | |
---|
| 491 | /** As normalise, except that this vector is unaffected and the |
---|
| 492 | normalised vector is returned as a copy. */ |
---|
| 493 | inline Vector2 normalisedCopy(void) const |
---|
| 494 | { |
---|
| 495 | Vector2 ret = *this; |
---|
| 496 | ret.normalise(); |
---|
| 497 | return ret; |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | /** Calculates a reflection vector to the plane with the given normal . |
---|
| 501 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. |
---|
| 502 | */ |
---|
| 503 | inline Vector2 reflect(const Vector2& normal) const |
---|
| 504 | { |
---|
| 505 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) ); |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | // special points |
---|
| 509 | static const Vector2 ZERO; |
---|
| 510 | static const Vector2 UNIT_X; |
---|
| 511 | static const Vector2 UNIT_Y; |
---|
| 512 | static const Vector2 NEGATIVE_UNIT_X; |
---|
| 513 | static const Vector2 NEGATIVE_UNIT_Y; |
---|
| 514 | static const Vector2 UNIT_SCALE; |
---|
| 515 | |
---|
| 516 | /** Function for writing to a stream. |
---|
| 517 | */ |
---|
| 518 | inline _OgreExport friend std::ostream& operator << |
---|
| 519 | ( std::ostream& o, const Vector2& v ) |
---|
| 520 | { |
---|
| 521 | o << "Vector2(" << v.x << ", " << v.y << ")"; |
---|
| 522 | return o; |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | }; |
---|
| 526 | |
---|
| 527 | } |
---|
| 528 | #endif |
---|