1 | /* |
---|
2 | ----------------------------------------------------------------------------- |
---|
3 | This source file is part of OGRE |
---|
4 | (Object-oriented Graphics Rendering Engine) |
---|
5 | For the latest info, see http://www.ogre3d.org/ |
---|
6 | |
---|
7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
8 | Also see acknowledgements in Readme.html |
---|
9 | |
---|
10 | This program is free software; you can redistribute it and/or modify it under |
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
13 | version. |
---|
14 | |
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
23 | |
---|
24 | You may alternatively use this source under the terms of a specific version of |
---|
25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
26 | Torus Knot Software Ltd. |
---|
27 | ----------------------------------------------------------------------------- |
---|
28 | */ |
---|
29 | #ifndef __Vector2_H__ |
---|
30 | #define __Vector2_H__ |
---|
31 | |
---|
32 | |
---|
33 | #include "OgrePrerequisites.h" |
---|
34 | #include "OgreMath.h" |
---|
35 | #include <ostream> |
---|
36 | |
---|
37 | namespace Ogre |
---|
38 | { |
---|
39 | |
---|
40 | /** Standard 2-dimensional vector. |
---|
41 | @remarks |
---|
42 | A direction in 2D space represented as distances along the 2 |
---|
43 | orthogonal axes (x, y). Note that positions, directions and |
---|
44 | scaling factors can be represented by a vector, depending on how |
---|
45 | you interpret the values. |
---|
46 | */ |
---|
47 | class _OgreExport Vector2 |
---|
48 | { |
---|
49 | public: |
---|
50 | Real x, y; |
---|
51 | |
---|
52 | public: |
---|
53 | inline Vector2() |
---|
54 | { |
---|
55 | } |
---|
56 | |
---|
57 | inline Vector2(const Real fX, const Real fY ) |
---|
58 | : x( fX ), y( fY ) |
---|
59 | { |
---|
60 | } |
---|
61 | |
---|
62 | inline explicit Vector2( const Real scaler ) |
---|
63 | : x( scaler), y( scaler ) |
---|
64 | { |
---|
65 | } |
---|
66 | |
---|
67 | inline explicit Vector2( const Real afCoordinate[2] ) |
---|
68 | : x( afCoordinate[0] ), |
---|
69 | y( afCoordinate[1] ) |
---|
70 | { |
---|
71 | } |
---|
72 | |
---|
73 | inline explicit Vector2( const int afCoordinate[2] ) |
---|
74 | { |
---|
75 | x = (Real)afCoordinate[0]; |
---|
76 | y = (Real)afCoordinate[1]; |
---|
77 | } |
---|
78 | |
---|
79 | inline explicit Vector2( Real* const r ) |
---|
80 | : x( r[0] ), y( r[1] ) |
---|
81 | { |
---|
82 | } |
---|
83 | |
---|
84 | inline Real operator [] ( const size_t i ) const |
---|
85 | { |
---|
86 | assert( i < 2 ); |
---|
87 | |
---|
88 | return *(&x+i); |
---|
89 | } |
---|
90 | |
---|
91 | inline Real& operator [] ( const size_t i ) |
---|
92 | { |
---|
93 | assert( i < 2 ); |
---|
94 | |
---|
95 | return *(&x+i); |
---|
96 | } |
---|
97 | |
---|
98 | /// Pointer accessor for direct copying |
---|
99 | inline Real* ptr() |
---|
100 | { |
---|
101 | return &x; |
---|
102 | } |
---|
103 | /// Pointer accessor for direct copying |
---|
104 | inline const Real* ptr() const |
---|
105 | { |
---|
106 | return &x; |
---|
107 | } |
---|
108 | |
---|
109 | /** Assigns the value of the other vector. |
---|
110 | @param |
---|
111 | rkVector The other vector |
---|
112 | */ |
---|
113 | inline Vector2& operator = ( const Vector2& rkVector ) |
---|
114 | { |
---|
115 | x = rkVector.x; |
---|
116 | y = rkVector.y; |
---|
117 | |
---|
118 | return *this; |
---|
119 | } |
---|
120 | |
---|
121 | inline Vector2& operator = ( const Real fScalar) |
---|
122 | { |
---|
123 | x = fScalar; |
---|
124 | y = fScalar; |
---|
125 | |
---|
126 | return *this; |
---|
127 | } |
---|
128 | |
---|
129 | inline bool operator == ( const Vector2& rkVector ) const |
---|
130 | { |
---|
131 | return ( x == rkVector.x && y == rkVector.y ); |
---|
132 | } |
---|
133 | |
---|
134 | inline bool operator != ( const Vector2& rkVector ) const |
---|
135 | { |
---|
136 | return ( x != rkVector.x || y != rkVector.y ); |
---|
137 | } |
---|
138 | |
---|
139 | // arithmetic operations |
---|
140 | inline Vector2 operator + ( const Vector2& rkVector ) const |
---|
141 | { |
---|
142 | return Vector2( |
---|
143 | x + rkVector.x, |
---|
144 | y + rkVector.y); |
---|
145 | } |
---|
146 | |
---|
147 | inline Vector2 operator - ( const Vector2& rkVector ) const |
---|
148 | { |
---|
149 | return Vector2( |
---|
150 | x - rkVector.x, |
---|
151 | y - rkVector.y); |
---|
152 | } |
---|
153 | |
---|
154 | inline Vector2 operator * ( const Real fScalar ) const |
---|
155 | { |
---|
156 | return Vector2( |
---|
157 | x * fScalar, |
---|
158 | y * fScalar); |
---|
159 | } |
---|
160 | |
---|
161 | inline Vector2 operator * ( const Vector2& rhs) const |
---|
162 | { |
---|
163 | return Vector2( |
---|
164 | x * rhs.x, |
---|
165 | y * rhs.y); |
---|
166 | } |
---|
167 | |
---|
168 | inline Vector2 operator / ( const Real fScalar ) const |
---|
169 | { |
---|
170 | assert( fScalar != 0.0 ); |
---|
171 | |
---|
172 | Real fInv = 1.0 / fScalar; |
---|
173 | |
---|
174 | return Vector2( |
---|
175 | x * fInv, |
---|
176 | y * fInv); |
---|
177 | } |
---|
178 | |
---|
179 | inline Vector2 operator / ( const Vector2& rhs) const |
---|
180 | { |
---|
181 | return Vector2( |
---|
182 | x / rhs.x, |
---|
183 | y / rhs.y); |
---|
184 | } |
---|
185 | |
---|
186 | inline const Vector2& operator + () const |
---|
187 | { |
---|
188 | return *this; |
---|
189 | } |
---|
190 | |
---|
191 | inline Vector2 operator - () const |
---|
192 | { |
---|
193 | return Vector2(-x, -y); |
---|
194 | } |
---|
195 | |
---|
196 | // overloaded operators to help Vector2 |
---|
197 | inline friend Vector2 operator * ( const Real fScalar, const Vector2& rkVector ) |
---|
198 | { |
---|
199 | return Vector2( |
---|
200 | fScalar * rkVector.x, |
---|
201 | fScalar * rkVector.y); |
---|
202 | } |
---|
203 | |
---|
204 | inline friend Vector2 operator / ( const Real fScalar, const Vector2& rkVector ) |
---|
205 | { |
---|
206 | return Vector2( |
---|
207 | fScalar / rkVector.x, |
---|
208 | fScalar / rkVector.y); |
---|
209 | } |
---|
210 | |
---|
211 | inline friend Vector2 operator + (const Vector2& lhs, const Real rhs) |
---|
212 | { |
---|
213 | return Vector2( |
---|
214 | lhs.x + rhs, |
---|
215 | lhs.y + rhs); |
---|
216 | } |
---|
217 | |
---|
218 | inline friend Vector2 operator + (const Real lhs, const Vector2& rhs) |
---|
219 | { |
---|
220 | return Vector2( |
---|
221 | lhs + rhs.x, |
---|
222 | lhs + rhs.y); |
---|
223 | } |
---|
224 | |
---|
225 | inline friend Vector2 operator - (const Vector2& lhs, const Real rhs) |
---|
226 | { |
---|
227 | return Vector2( |
---|
228 | lhs.x - rhs, |
---|
229 | lhs.y - rhs); |
---|
230 | } |
---|
231 | |
---|
232 | inline friend Vector2 operator - (const Real lhs, const Vector2& rhs) |
---|
233 | { |
---|
234 | return Vector2( |
---|
235 | lhs - rhs.x, |
---|
236 | lhs - rhs.y); |
---|
237 | } |
---|
238 | // arithmetic updates |
---|
239 | inline Vector2& operator += ( const Vector2& rkVector ) |
---|
240 | { |
---|
241 | x += rkVector.x; |
---|
242 | y += rkVector.y; |
---|
243 | |
---|
244 | return *this; |
---|
245 | } |
---|
246 | |
---|
247 | inline Vector2& operator += ( const Real fScaler ) |
---|
248 | { |
---|
249 | x += fScaler; |
---|
250 | y += fScaler; |
---|
251 | |
---|
252 | return *this; |
---|
253 | } |
---|
254 | |
---|
255 | inline Vector2& operator -= ( const Vector2& rkVector ) |
---|
256 | { |
---|
257 | x -= rkVector.x; |
---|
258 | y -= rkVector.y; |
---|
259 | |
---|
260 | return *this; |
---|
261 | } |
---|
262 | |
---|
263 | inline Vector2& operator -= ( const Real fScaler ) |
---|
264 | { |
---|
265 | x -= fScaler; |
---|
266 | y -= fScaler; |
---|
267 | |
---|
268 | return *this; |
---|
269 | } |
---|
270 | |
---|
271 | inline Vector2& operator *= ( const Real fScalar ) |
---|
272 | { |
---|
273 | x *= fScalar; |
---|
274 | y *= fScalar; |
---|
275 | |
---|
276 | return *this; |
---|
277 | } |
---|
278 | |
---|
279 | inline Vector2& operator *= ( const Vector2& rkVector ) |
---|
280 | { |
---|
281 | x *= rkVector.x; |
---|
282 | y *= rkVector.y; |
---|
283 | |
---|
284 | return *this; |
---|
285 | } |
---|
286 | |
---|
287 | inline Vector2& operator /= ( const Real fScalar ) |
---|
288 | { |
---|
289 | assert( fScalar != 0.0 ); |
---|
290 | |
---|
291 | Real fInv = 1.0 / fScalar; |
---|
292 | |
---|
293 | x *= fInv; |
---|
294 | y *= fInv; |
---|
295 | |
---|
296 | return *this; |
---|
297 | } |
---|
298 | |
---|
299 | inline Vector2& operator /= ( const Vector2& rkVector ) |
---|
300 | { |
---|
301 | x /= rkVector.x; |
---|
302 | y /= rkVector.y; |
---|
303 | |
---|
304 | return *this; |
---|
305 | } |
---|
306 | |
---|
307 | /** Returns the length (magnitude) of the vector. |
---|
308 | @warning |
---|
309 | This operation requires a square root and is expensive in |
---|
310 | terms of CPU operations. If you don't need to know the exact |
---|
311 | length (e.g. for just comparing lengths) use squaredLength() |
---|
312 | instead. |
---|
313 | */ |
---|
314 | inline Real length () const |
---|
315 | { |
---|
316 | return Math::Sqrt( x * x + y * y ); |
---|
317 | } |
---|
318 | |
---|
319 | /** Returns the square of the length(magnitude) of the vector. |
---|
320 | @remarks |
---|
321 | This method is for efficiency - calculating the actual |
---|
322 | length of a vector requires a square root, which is expensive |
---|
323 | in terms of the operations required. This method returns the |
---|
324 | square of the length of the vector, i.e. the same as the |
---|
325 | length but before the square root is taken. Use this if you |
---|
326 | want to find the longest / shortest vector without incurring |
---|
327 | the square root. |
---|
328 | */ |
---|
329 | inline Real squaredLength () const |
---|
330 | { |
---|
331 | return x * x + y * y; |
---|
332 | } |
---|
333 | |
---|
334 | /** Calculates the dot (scalar) product of this vector with another. |
---|
335 | @remarks |
---|
336 | The dot product can be used to calculate the angle between 2 |
---|
337 | vectors. If both are unit vectors, the dot product is the |
---|
338 | cosine of the angle; otherwise the dot product must be |
---|
339 | divided by the product of the lengths of both vectors to get |
---|
340 | the cosine of the angle. This result can further be used to |
---|
341 | calculate the distance of a point from a plane. |
---|
342 | @param |
---|
343 | vec Vector with which to calculate the dot product (together |
---|
344 | with this one). |
---|
345 | @returns |
---|
346 | A float representing the dot product value. |
---|
347 | */ |
---|
348 | inline Real dotProduct(const Vector2& vec) const |
---|
349 | { |
---|
350 | return x * vec.x + y * vec.y; |
---|
351 | } |
---|
352 | |
---|
353 | /** Normalises the vector. |
---|
354 | @remarks |
---|
355 | This method normalises the vector such that it's |
---|
356 | length / magnitude is 1. The result is called a unit vector. |
---|
357 | @note |
---|
358 | This function will not crash for zero-sized vectors, but there |
---|
359 | will be no changes made to their components. |
---|
360 | @returns The previous length of the vector. |
---|
361 | */ |
---|
362 | inline Real normalise() |
---|
363 | { |
---|
364 | Real fLength = Math::Sqrt( x * x + y * y); |
---|
365 | |
---|
366 | // Will also work for zero-sized vectors, but will change nothing |
---|
367 | if ( fLength > 1e-08 ) |
---|
368 | { |
---|
369 | Real fInvLength = 1.0 / fLength; |
---|
370 | x *= fInvLength; |
---|
371 | y *= fInvLength; |
---|
372 | } |
---|
373 | |
---|
374 | return fLength; |
---|
375 | } |
---|
376 | |
---|
377 | |
---|
378 | |
---|
379 | /** Returns a vector at a point half way between this and the passed |
---|
380 | in vector. |
---|
381 | */ |
---|
382 | inline Vector2 midPoint( const Vector2& vec ) const |
---|
383 | { |
---|
384 | return Vector2( |
---|
385 | ( x + vec.x ) * 0.5, |
---|
386 | ( y + vec.y ) * 0.5 ); |
---|
387 | } |
---|
388 | |
---|
389 | /** Returns true if the vector's scalar components are all greater |
---|
390 | that the ones of the vector it is compared against. |
---|
391 | */ |
---|
392 | inline bool operator < ( const Vector2& rhs ) const |
---|
393 | { |
---|
394 | if( x < rhs.x && y < rhs.y ) |
---|
395 | return true; |
---|
396 | return false; |
---|
397 | } |
---|
398 | |
---|
399 | /** Returns true if the vector's scalar components are all smaller |
---|
400 | that the ones of the vector it is compared against. |
---|
401 | */ |
---|
402 | inline bool operator > ( const Vector2& rhs ) const |
---|
403 | { |
---|
404 | if( x > rhs.x && y > rhs.y ) |
---|
405 | return true; |
---|
406 | return false; |
---|
407 | } |
---|
408 | |
---|
409 | /** Sets this vector's components to the minimum of its own and the |
---|
410 | ones of the passed in vector. |
---|
411 | @remarks |
---|
412 | 'Minimum' in this case means the combination of the lowest |
---|
413 | value of x, y and z from both vectors. Lowest is taken just |
---|
414 | numerically, not magnitude, so -1 < 0. |
---|
415 | */ |
---|
416 | inline void makeFloor( const Vector2& cmp ) |
---|
417 | { |
---|
418 | if( cmp.x < x ) x = cmp.x; |
---|
419 | if( cmp.y < y ) y = cmp.y; |
---|
420 | } |
---|
421 | |
---|
422 | /** Sets this vector's components to the maximum of its own and the |
---|
423 | ones of the passed in vector. |
---|
424 | @remarks |
---|
425 | 'Maximum' in this case means the combination of the highest |
---|
426 | value of x, y and z from both vectors. Highest is taken just |
---|
427 | numerically, not magnitude, so 1 > -3. |
---|
428 | */ |
---|
429 | inline void makeCeil( const Vector2& cmp ) |
---|
430 | { |
---|
431 | if( cmp.x > x ) x = cmp.x; |
---|
432 | if( cmp.y > y ) y = cmp.y; |
---|
433 | } |
---|
434 | |
---|
435 | /** Generates a vector perpendicular to this vector (eg an 'up' vector). |
---|
436 | @remarks |
---|
437 | This method will return a vector which is perpendicular to this |
---|
438 | vector. There are an infinite number of possibilities but this |
---|
439 | method will guarantee to generate one of them. If you need more |
---|
440 | control you should use the Quaternion class. |
---|
441 | */ |
---|
442 | inline Vector2 perpendicular(void) const |
---|
443 | { |
---|
444 | return Vector2 (-y, x); |
---|
445 | } |
---|
446 | /** Calculates the 2 dimensional cross-product of 2 vectors, which results |
---|
447 | in a single floating point value which is 2 times the area of the triangle. |
---|
448 | */ |
---|
449 | inline Real crossProduct( const Vector2& rkVector ) const |
---|
450 | { |
---|
451 | return x * rkVector.y - y * rkVector.x; |
---|
452 | } |
---|
453 | /** Generates a new random vector which deviates from this vector by a |
---|
454 | given angle in a random direction. |
---|
455 | @remarks |
---|
456 | This method assumes that the random number generator has already |
---|
457 | been seeded appropriately. |
---|
458 | @param |
---|
459 | angle The angle at which to deviate in radians |
---|
460 | @param |
---|
461 | up Any vector perpendicular to this one (which could generated |
---|
462 | by cross-product of this vector and any other non-colinear |
---|
463 | vector). If you choose not to provide this the function will |
---|
464 | derive one on it's own, however if you provide one yourself the |
---|
465 | function will be faster (this allows you to reuse up vectors if |
---|
466 | you call this method more than once) |
---|
467 | @returns |
---|
468 | A random vector which deviates from this vector by angle. This |
---|
469 | vector will not be normalised, normalise it if you wish |
---|
470 | afterwards. |
---|
471 | */ |
---|
472 | inline Vector2 randomDeviant( |
---|
473 | Real angle) const |
---|
474 | { |
---|
475 | |
---|
476 | angle *= Math::UnitRandom() * Math::TWO_PI; |
---|
477 | Real cosa = cos(angle); |
---|
478 | Real sina = sin(angle); |
---|
479 | return Vector2(cosa * x - sina * y, |
---|
480 | sina * x + cosa * y); |
---|
481 | } |
---|
482 | |
---|
483 | /** Returns true if this vector is zero length. */ |
---|
484 | inline bool isZeroLength(void) const |
---|
485 | { |
---|
486 | Real sqlen = (x * x) + (y * y); |
---|
487 | return (sqlen < (1e-06 * 1e-06)); |
---|
488 | |
---|
489 | } |
---|
490 | |
---|
491 | /** As normalise, except that this vector is unaffected and the |
---|
492 | normalised vector is returned as a copy. */ |
---|
493 | inline Vector2 normalisedCopy(void) const |
---|
494 | { |
---|
495 | Vector2 ret = *this; |
---|
496 | ret.normalise(); |
---|
497 | return ret; |
---|
498 | } |
---|
499 | |
---|
500 | /** Calculates a reflection vector to the plane with the given normal . |
---|
501 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. |
---|
502 | */ |
---|
503 | inline Vector2 reflect(const Vector2& normal) const |
---|
504 | { |
---|
505 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) ); |
---|
506 | } |
---|
507 | |
---|
508 | // special points |
---|
509 | static const Vector2 ZERO; |
---|
510 | static const Vector2 UNIT_X; |
---|
511 | static const Vector2 UNIT_Y; |
---|
512 | static const Vector2 NEGATIVE_UNIT_X; |
---|
513 | static const Vector2 NEGATIVE_UNIT_Y; |
---|
514 | static const Vector2 UNIT_SCALE; |
---|
515 | |
---|
516 | /** Function for writing to a stream. |
---|
517 | */ |
---|
518 | inline _OgreExport friend std::ostream& operator << |
---|
519 | ( std::ostream& o, const Vector2& v ) |
---|
520 | { |
---|
521 | o << "Vector2(" << v.x << ", " << v.y << ")"; |
---|
522 | return o; |
---|
523 | } |
---|
524 | |
---|
525 | }; |
---|
526 | |
---|
527 | } |
---|
528 | #endif |
---|