[5789] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | #ifndef __Vector3_H__ |
---|
| 30 | #define __Vector3_H__ |
---|
| 31 | |
---|
| 32 | #include "OgrePrerequisites.h" |
---|
| 33 | #include "OgreMath.h" |
---|
| 34 | #include "OgreQuaternion.h" |
---|
| 35 | #include <ostream> |
---|
| 36 | |
---|
| 37 | namespace Ogre |
---|
| 38 | { |
---|
| 39 | |
---|
| 40 | /** Standard 3-dimensional vector. |
---|
| 41 | @remarks |
---|
| 42 | A direction in 3D space represented as distances along the 3 |
---|
| 43 | orthogonal axes (x, y, z). Note that positions, directions and |
---|
| 44 | scaling factors can be represented by a vector, depending on how |
---|
| 45 | you interpret the values. |
---|
| 46 | */ |
---|
| 47 | class _OgreExport Vector3 |
---|
| 48 | { |
---|
| 49 | public: |
---|
| 50 | Real x, y, z; |
---|
| 51 | |
---|
| 52 | public: |
---|
| 53 | inline Vector3() |
---|
| 54 | { |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | inline Vector3( const Real fX, const Real fY, const Real fZ ) |
---|
| 58 | : x( fX ), y( fY ), z( fZ ) |
---|
| 59 | { |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | inline explicit Vector3( const Real afCoordinate[3] ) |
---|
| 63 | : x( afCoordinate[0] ), |
---|
| 64 | y( afCoordinate[1] ), |
---|
| 65 | z( afCoordinate[2] ) |
---|
| 66 | { |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | inline explicit Vector3( const int afCoordinate[3] ) |
---|
| 70 | { |
---|
| 71 | x = (Real)afCoordinate[0]; |
---|
| 72 | y = (Real)afCoordinate[1]; |
---|
| 73 | z = (Real)afCoordinate[2]; |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | inline explicit Vector3( Real* const r ) |
---|
| 77 | : x( r[0] ), y( r[1] ), z( r[2] ) |
---|
| 78 | { |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | inline explicit Vector3( const Real scaler ) |
---|
| 82 | : x( scaler ) |
---|
| 83 | , y( scaler ) |
---|
| 84 | , z( scaler ) |
---|
| 85 | { |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | inline Real operator [] ( const size_t i ) const |
---|
| 90 | { |
---|
| 91 | assert( i < 3 ); |
---|
| 92 | |
---|
| 93 | return *(&x+i); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | inline Real& operator [] ( const size_t i ) |
---|
| 97 | { |
---|
| 98 | assert( i < 3 ); |
---|
| 99 | |
---|
| 100 | return *(&x+i); |
---|
| 101 | } |
---|
| 102 | /// Pointer accessor for direct copying |
---|
| 103 | inline Real* ptr() |
---|
| 104 | { |
---|
| 105 | return &x; |
---|
| 106 | } |
---|
| 107 | /// Pointer accessor for direct copying |
---|
| 108 | inline const Real* ptr() const |
---|
| 109 | { |
---|
| 110 | return &x; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | /** Assigns the value of the other vector. |
---|
| 114 | @param |
---|
| 115 | rkVector The other vector |
---|
| 116 | */ |
---|
| 117 | inline Vector3& operator = ( const Vector3& rkVector ) |
---|
| 118 | { |
---|
| 119 | x = rkVector.x; |
---|
| 120 | y = rkVector.y; |
---|
| 121 | z = rkVector.z; |
---|
| 122 | |
---|
| 123 | return *this; |
---|
| 124 | } |
---|
| 125 | |
---|
| 126 | inline Vector3& operator = ( const Real fScaler ) |
---|
| 127 | { |
---|
| 128 | x = fScaler; |
---|
| 129 | y = fScaler; |
---|
| 130 | z = fScaler; |
---|
| 131 | |
---|
| 132 | return *this; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | inline bool operator == ( const Vector3& rkVector ) const |
---|
| 136 | { |
---|
| 137 | return ( x == rkVector.x && y == rkVector.y && z == rkVector.z ); |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | inline bool operator != ( const Vector3& rkVector ) const |
---|
| 141 | { |
---|
| 142 | return ( x != rkVector.x || y != rkVector.y || z != rkVector.z ); |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | // arithmetic operations |
---|
| 146 | inline Vector3 operator + ( const Vector3& rkVector ) const |
---|
| 147 | { |
---|
| 148 | return Vector3( |
---|
| 149 | x + rkVector.x, |
---|
| 150 | y + rkVector.y, |
---|
| 151 | z + rkVector.z); |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | inline Vector3 operator - ( const Vector3& rkVector ) const |
---|
| 155 | { |
---|
| 156 | return Vector3( |
---|
| 157 | x - rkVector.x, |
---|
| 158 | y - rkVector.y, |
---|
| 159 | z - rkVector.z); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | inline Vector3 operator * ( const Real fScalar ) const |
---|
| 163 | { |
---|
| 164 | return Vector3( |
---|
| 165 | x * fScalar, |
---|
| 166 | y * fScalar, |
---|
| 167 | z * fScalar); |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | inline Vector3 operator * ( const Vector3& rhs) const |
---|
| 171 | { |
---|
| 172 | return Vector3( |
---|
| 173 | x * rhs.x, |
---|
| 174 | y * rhs.y, |
---|
| 175 | z * rhs.z); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | inline Vector3 operator / ( const Real fScalar ) const |
---|
| 179 | { |
---|
| 180 | assert( fScalar != 0.0 ); |
---|
| 181 | |
---|
| 182 | Real fInv = 1.0 / fScalar; |
---|
| 183 | |
---|
| 184 | return Vector3( |
---|
| 185 | x * fInv, |
---|
| 186 | y * fInv, |
---|
| 187 | z * fInv); |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | inline Vector3 operator / ( const Vector3& rhs) const |
---|
| 191 | { |
---|
| 192 | return Vector3( |
---|
| 193 | x / rhs.x, |
---|
| 194 | y / rhs.y, |
---|
| 195 | z / rhs.z); |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | inline const Vector3& operator + () const |
---|
| 199 | { |
---|
| 200 | return *this; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | inline Vector3 operator - () const |
---|
| 204 | { |
---|
| 205 | return Vector3(-x, -y, -z); |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | // overloaded operators to help Vector3 |
---|
| 209 | inline friend Vector3 operator * ( const Real fScalar, const Vector3& rkVector ) |
---|
| 210 | { |
---|
| 211 | return Vector3( |
---|
| 212 | fScalar * rkVector.x, |
---|
| 213 | fScalar * rkVector.y, |
---|
| 214 | fScalar * rkVector.z); |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | inline friend Vector3 operator / ( const Real fScalar, const Vector3& rkVector ) |
---|
| 218 | { |
---|
| 219 | return Vector3( |
---|
| 220 | fScalar / rkVector.x, |
---|
| 221 | fScalar / rkVector.y, |
---|
| 222 | fScalar / rkVector.z); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | inline friend Vector3 operator + (const Vector3& lhs, const Real rhs) |
---|
| 226 | { |
---|
| 227 | return Vector3( |
---|
| 228 | lhs.x + rhs, |
---|
| 229 | lhs.y + rhs, |
---|
| 230 | lhs.z + rhs); |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | inline friend Vector3 operator + (const Real lhs, const Vector3& rhs) |
---|
| 234 | { |
---|
| 235 | return Vector3( |
---|
| 236 | lhs + rhs.x, |
---|
| 237 | lhs + rhs.y, |
---|
| 238 | lhs + rhs.z); |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | inline friend Vector3 operator - (const Vector3& lhs, const Real rhs) |
---|
| 242 | { |
---|
| 243 | return Vector3( |
---|
| 244 | lhs.x - rhs, |
---|
| 245 | lhs.y - rhs, |
---|
| 246 | lhs.z - rhs); |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | inline friend Vector3 operator - (const Real lhs, const Vector3& rhs) |
---|
| 250 | { |
---|
| 251 | return Vector3( |
---|
| 252 | lhs - rhs.x, |
---|
| 253 | lhs - rhs.y, |
---|
| 254 | lhs - rhs.z); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | // arithmetic updates |
---|
| 258 | inline Vector3& operator += ( const Vector3& rkVector ) |
---|
| 259 | { |
---|
| 260 | x += rkVector.x; |
---|
| 261 | y += rkVector.y; |
---|
| 262 | z += rkVector.z; |
---|
| 263 | |
---|
| 264 | return *this; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | inline Vector3& operator += ( const Real fScalar ) |
---|
| 268 | { |
---|
| 269 | x += fScalar; |
---|
| 270 | y += fScalar; |
---|
| 271 | z += fScalar; |
---|
| 272 | return *this; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | inline Vector3& operator -= ( const Vector3& rkVector ) |
---|
| 276 | { |
---|
| 277 | x -= rkVector.x; |
---|
| 278 | y -= rkVector.y; |
---|
| 279 | z -= rkVector.z; |
---|
| 280 | |
---|
| 281 | return *this; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | inline Vector3& operator -= ( const Real fScalar ) |
---|
| 285 | { |
---|
| 286 | x -= fScalar; |
---|
| 287 | y -= fScalar; |
---|
| 288 | z -= fScalar; |
---|
| 289 | return *this; |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | inline Vector3& operator *= ( const Real fScalar ) |
---|
| 293 | { |
---|
| 294 | x *= fScalar; |
---|
| 295 | y *= fScalar; |
---|
| 296 | z *= fScalar; |
---|
| 297 | return *this; |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | inline Vector3& operator *= ( const Vector3& rkVector ) |
---|
| 301 | { |
---|
| 302 | x *= rkVector.x; |
---|
| 303 | y *= rkVector.y; |
---|
| 304 | z *= rkVector.z; |
---|
| 305 | |
---|
| 306 | return *this; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | inline Vector3& operator /= ( const Real fScalar ) |
---|
| 310 | { |
---|
| 311 | assert( fScalar != 0.0 ); |
---|
| 312 | |
---|
| 313 | Real fInv = 1.0 / fScalar; |
---|
| 314 | |
---|
| 315 | x *= fInv; |
---|
| 316 | y *= fInv; |
---|
| 317 | z *= fInv; |
---|
| 318 | |
---|
| 319 | return *this; |
---|
| 320 | } |
---|
| 321 | |
---|
| 322 | inline Vector3& operator /= ( const Vector3& rkVector ) |
---|
| 323 | { |
---|
| 324 | x /= rkVector.x; |
---|
| 325 | y /= rkVector.y; |
---|
| 326 | z /= rkVector.z; |
---|
| 327 | |
---|
| 328 | return *this; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | /** Returns the length (magnitude) of the vector. |
---|
| 333 | @warning |
---|
| 334 | This operation requires a square root and is expensive in |
---|
| 335 | terms of CPU operations. If you don't need to know the exact |
---|
| 336 | length (e.g. for just comparing lengths) use squaredLength() |
---|
| 337 | instead. |
---|
| 338 | */ |
---|
| 339 | inline Real length () const |
---|
| 340 | { |
---|
| 341 | return Math::Sqrt( x * x + y * y + z * z ); |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | /** Returns the square of the length(magnitude) of the vector. |
---|
| 345 | @remarks |
---|
| 346 | This method is for efficiency - calculating the actual |
---|
| 347 | length of a vector requires a square root, which is expensive |
---|
| 348 | in terms of the operations required. This method returns the |
---|
| 349 | square of the length of the vector, i.e. the same as the |
---|
| 350 | length but before the square root is taken. Use this if you |
---|
| 351 | want to find the longest / shortest vector without incurring |
---|
| 352 | the square root. |
---|
| 353 | */ |
---|
| 354 | inline Real squaredLength () const |
---|
| 355 | { |
---|
| 356 | return x * x + y * y + z * z; |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | /** Returns the distance to another vector. |
---|
| 360 | @warning |
---|
| 361 | This operation requires a square root and is expensive in |
---|
| 362 | terms of CPU operations. If you don't need to know the exact |
---|
| 363 | distance (e.g. for just comparing distances) use squaredDistance() |
---|
| 364 | instead. |
---|
| 365 | */ |
---|
| 366 | inline Real distance(const Vector3& rhs) const |
---|
| 367 | { |
---|
| 368 | return (*this - rhs).length(); |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | /** Returns the square of the distance to another vector. |
---|
| 372 | @remarks |
---|
| 373 | This method is for efficiency - calculating the actual |
---|
| 374 | distance to another vector requires a square root, which is |
---|
| 375 | expensive in terms of the operations required. This method |
---|
| 376 | returns the square of the distance to another vector, i.e. |
---|
| 377 | the same as the distance but before the square root is taken. |
---|
| 378 | Use this if you want to find the longest / shortest distance |
---|
| 379 | without incurring the square root. |
---|
| 380 | */ |
---|
| 381 | inline Real squaredDistance(const Vector3& rhs) const |
---|
| 382 | { |
---|
| 383 | return (*this - rhs).squaredLength(); |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | /** Calculates the dot (scalar) product of this vector with another. |
---|
| 387 | @remarks |
---|
| 388 | The dot product can be used to calculate the angle between 2 |
---|
| 389 | vectors. If both are unit vectors, the dot product is the |
---|
| 390 | cosine of the angle; otherwise the dot product must be |
---|
| 391 | divided by the product of the lengths of both vectors to get |
---|
| 392 | the cosine of the angle. This result can further be used to |
---|
| 393 | calculate the distance of a point from a plane. |
---|
| 394 | @param |
---|
| 395 | vec Vector with which to calculate the dot product (together |
---|
| 396 | with this one). |
---|
| 397 | @returns |
---|
| 398 | A float representing the dot product value. |
---|
| 399 | */ |
---|
| 400 | inline Real dotProduct(const Vector3& vec) const |
---|
| 401 | { |
---|
| 402 | return x * vec.x + y * vec.y + z * vec.z; |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | /** Calculates the absolute dot (scalar) product of this vector with another. |
---|
| 406 | @remarks |
---|
| 407 | This function work similar dotProduct, except it use absolute value |
---|
| 408 | of each component of the vector to computing. |
---|
| 409 | @param |
---|
| 410 | vec Vector with which to calculate the absolute dot product (together |
---|
| 411 | with this one). |
---|
| 412 | @returns |
---|
| 413 | A Real representing the absolute dot product value. |
---|
| 414 | */ |
---|
| 415 | inline Real absDotProduct(const Vector3& vec) const |
---|
| 416 | { |
---|
| 417 | return Math::Abs(x * vec.x) + Math::Abs(y * vec.y) + Math::Abs(z * vec.z); |
---|
| 418 | } |
---|
| 419 | |
---|
| 420 | /** Normalises the vector. |
---|
| 421 | @remarks |
---|
| 422 | This method normalises the vector such that it's |
---|
| 423 | length / magnitude is 1. The result is called a unit vector. |
---|
| 424 | @note |
---|
| 425 | This function will not crash for zero-sized vectors, but there |
---|
| 426 | will be no changes made to their components. |
---|
| 427 | @returns The previous length of the vector. |
---|
| 428 | */ |
---|
| 429 | inline Real normalise() |
---|
| 430 | { |
---|
| 431 | Real fLength = Math::Sqrt( x * x + y * y + z * z ); |
---|
| 432 | |
---|
| 433 | // Will also work for zero-sized vectors, but will change nothing |
---|
| 434 | if ( fLength > 1e-08 ) |
---|
| 435 | { |
---|
| 436 | Real fInvLength = 1.0 / fLength; |
---|
| 437 | x *= fInvLength; |
---|
| 438 | y *= fInvLength; |
---|
| 439 | z *= fInvLength; |
---|
| 440 | } |
---|
| 441 | |
---|
| 442 | return fLength; |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | /** Calculates the cross-product of 2 vectors, i.e. the vector that |
---|
| 446 | lies perpendicular to them both. |
---|
| 447 | @remarks |
---|
| 448 | The cross-product is normally used to calculate the normal |
---|
| 449 | vector of a plane, by calculating the cross-product of 2 |
---|
| 450 | non-equivalent vectors which lie on the plane (e.g. 2 edges |
---|
| 451 | of a triangle). |
---|
| 452 | @param |
---|
| 453 | vec Vector which, together with this one, will be used to |
---|
| 454 | calculate the cross-product. |
---|
| 455 | @returns |
---|
| 456 | A vector which is the result of the cross-product. This |
---|
| 457 | vector will <b>NOT</b> be normalised, to maximise efficiency |
---|
| 458 | - call Vector3::normalise on the result if you wish this to |
---|
| 459 | be done. As for which side the resultant vector will be on, the |
---|
| 460 | returned vector will be on the side from which the arc from 'this' |
---|
| 461 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z) |
---|
| 462 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X. |
---|
| 463 | This is because OGRE uses a right-handed coordinate system. |
---|
| 464 | @par |
---|
| 465 | For a clearer explanation, look a the left and the bottom edges |
---|
| 466 | of your monitor's screen. Assume that the first vector is the |
---|
| 467 | left edge and the second vector is the bottom edge, both of |
---|
| 468 | them starting from the lower-left corner of the screen. The |
---|
| 469 | resulting vector is going to be perpendicular to both of them |
---|
| 470 | and will go <i>inside</i> the screen, towards the cathode tube |
---|
| 471 | (assuming you're using a CRT monitor, of course). |
---|
| 472 | */ |
---|
| 473 | inline Vector3 crossProduct( const Vector3& rkVector ) const |
---|
| 474 | { |
---|
| 475 | return Vector3( |
---|
| 476 | y * rkVector.z - z * rkVector.y, |
---|
| 477 | z * rkVector.x - x * rkVector.z, |
---|
| 478 | x * rkVector.y - y * rkVector.x); |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | /** Returns a vector at a point half way between this and the passed |
---|
| 482 | in vector. |
---|
| 483 | */ |
---|
| 484 | inline Vector3 midPoint( const Vector3& vec ) const |
---|
| 485 | { |
---|
| 486 | return Vector3( |
---|
| 487 | ( x + vec.x ) * 0.5, |
---|
| 488 | ( y + vec.y ) * 0.5, |
---|
| 489 | ( z + vec.z ) * 0.5 ); |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | /** Returns true if the vector's scalar components are all greater |
---|
| 493 | that the ones of the vector it is compared against. |
---|
| 494 | */ |
---|
| 495 | inline bool operator < ( const Vector3& rhs ) const |
---|
| 496 | { |
---|
| 497 | if( x < rhs.x && y < rhs.y && z < rhs.z ) |
---|
| 498 | return true; |
---|
| 499 | return false; |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | /** Returns true if the vector's scalar components are all smaller |
---|
| 503 | that the ones of the vector it is compared against. |
---|
| 504 | */ |
---|
| 505 | inline bool operator > ( const Vector3& rhs ) const |
---|
| 506 | { |
---|
| 507 | if( x > rhs.x && y > rhs.y && z > rhs.z ) |
---|
| 508 | return true; |
---|
| 509 | return false; |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | /** Sets this vector's components to the minimum of its own and the |
---|
| 513 | ones of the passed in vector. |
---|
| 514 | @remarks |
---|
| 515 | 'Minimum' in this case means the combination of the lowest |
---|
| 516 | value of x, y and z from both vectors. Lowest is taken just |
---|
| 517 | numerically, not magnitude, so -1 < 0. |
---|
| 518 | */ |
---|
| 519 | inline void makeFloor( const Vector3& cmp ) |
---|
| 520 | { |
---|
| 521 | if( cmp.x < x ) x = cmp.x; |
---|
| 522 | if( cmp.y < y ) y = cmp.y; |
---|
| 523 | if( cmp.z < z ) z = cmp.z; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** Sets this vector's components to the maximum of its own and the |
---|
| 527 | ones of the passed in vector. |
---|
| 528 | @remarks |
---|
| 529 | 'Maximum' in this case means the combination of the highest |
---|
| 530 | value of x, y and z from both vectors. Highest is taken just |
---|
| 531 | numerically, not magnitude, so 1 > -3. |
---|
| 532 | */ |
---|
| 533 | inline void makeCeil( const Vector3& cmp ) |
---|
| 534 | { |
---|
| 535 | if( cmp.x > x ) x = cmp.x; |
---|
| 536 | if( cmp.y > y ) y = cmp.y; |
---|
| 537 | if( cmp.z > z ) z = cmp.z; |
---|
| 538 | } |
---|
| 539 | |
---|
| 540 | /** Generates a vector perpendicular to this vector (eg an 'up' vector). |
---|
| 541 | @remarks |
---|
| 542 | This method will return a vector which is perpendicular to this |
---|
| 543 | vector. There are an infinite number of possibilities but this |
---|
| 544 | method will guarantee to generate one of them. If you need more |
---|
| 545 | control you should use the Quaternion class. |
---|
| 546 | */ |
---|
| 547 | inline Vector3 perpendicular(void) const |
---|
| 548 | { |
---|
| 549 | static const Real fSquareZero = 1e-06 * 1e-06; |
---|
| 550 | |
---|
| 551 | Vector3 perp = this->crossProduct( Vector3::UNIT_X ); |
---|
| 552 | |
---|
| 553 | // Check length |
---|
| 554 | if( perp.squaredLength() < fSquareZero ) |
---|
| 555 | { |
---|
| 556 | /* This vector is the Y axis multiplied by a scalar, so we have |
---|
| 557 | to use another axis. |
---|
| 558 | */ |
---|
| 559 | perp = this->crossProduct( Vector3::UNIT_Y ); |
---|
| 560 | } |
---|
| 561 | perp.normalise(); |
---|
| 562 | |
---|
| 563 | return perp; |
---|
| 564 | } |
---|
| 565 | /** Generates a new random vector which deviates from this vector by a |
---|
| 566 | given angle in a random direction. |
---|
| 567 | @remarks |
---|
| 568 | This method assumes that the random number generator has already |
---|
| 569 | been seeded appropriately. |
---|
| 570 | @param |
---|
| 571 | angle The angle at which to deviate |
---|
| 572 | @param |
---|
| 573 | up Any vector perpendicular to this one (which could generated |
---|
| 574 | by cross-product of this vector and any other non-colinear |
---|
| 575 | vector). If you choose not to provide this the function will |
---|
| 576 | derive one on it's own, however if you provide one yourself the |
---|
| 577 | function will be faster (this allows you to reuse up vectors if |
---|
| 578 | you call this method more than once) |
---|
| 579 | @returns |
---|
| 580 | A random vector which deviates from this vector by angle. This |
---|
| 581 | vector will not be normalised, normalise it if you wish |
---|
| 582 | afterwards. |
---|
| 583 | */ |
---|
| 584 | inline Vector3 randomDeviant( |
---|
| 585 | const Radian& angle, |
---|
| 586 | const Vector3& up = Vector3::ZERO ) const |
---|
| 587 | { |
---|
| 588 | Vector3 newUp; |
---|
| 589 | |
---|
| 590 | if (up == Vector3::ZERO) |
---|
| 591 | { |
---|
| 592 | // Generate an up vector |
---|
| 593 | newUp = this->perpendicular(); |
---|
| 594 | } |
---|
| 595 | else |
---|
| 596 | { |
---|
| 597 | newUp = up; |
---|
| 598 | } |
---|
| 599 | |
---|
| 600 | // Rotate up vector by random amount around this |
---|
| 601 | Quaternion q; |
---|
| 602 | q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this ); |
---|
| 603 | newUp = q * newUp; |
---|
| 604 | |
---|
| 605 | // Finally rotate this by given angle around randomised up |
---|
| 606 | q.FromAngleAxis( angle, newUp ); |
---|
| 607 | return q * (*this); |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | /** Gets the angle between 2 vectors. |
---|
| 611 | @remarks |
---|
| 612 | Vectors do not have to be unit-length but must represent directions. |
---|
| 613 | */ |
---|
| 614 | inline Radian angleBetween(const Vector3& dest) |
---|
| 615 | { |
---|
| 616 | Real lenProduct = length() * dest.length(); |
---|
| 617 | |
---|
| 618 | // Divide by zero check |
---|
| 619 | if(lenProduct < 1e-6f) |
---|
| 620 | lenProduct = 1e-6f; |
---|
| 621 | |
---|
| 622 | Real f = dotProduct(dest) / lenProduct; |
---|
| 623 | |
---|
| 624 | f = Math::Clamp(f, (Real)-1.0, (Real)1.0); |
---|
| 625 | return Math::ACos(f); |
---|
| 626 | |
---|
| 627 | } |
---|
| 628 | /** Gets the shortest arc quaternion to rotate this vector to the destination |
---|
| 629 | vector. |
---|
| 630 | @remarks |
---|
| 631 | If you call this with a dest vector that is close to the inverse |
---|
| 632 | of this vector, we will rotate 180 degrees around the 'fallbackAxis' |
---|
| 633 | (if specified, or a generated axis if not) since in this case |
---|
| 634 | ANY axis of rotation is valid. |
---|
| 635 | */ |
---|
| 636 | Quaternion getRotationTo(const Vector3& dest, |
---|
| 637 | const Vector3& fallbackAxis = Vector3::ZERO) const |
---|
| 638 | { |
---|
| 639 | // Based on Stan Melax's article in Game Programming Gems |
---|
| 640 | Quaternion q; |
---|
| 641 | // Copy, since cannot modify local |
---|
| 642 | Vector3 v0 = *this; |
---|
| 643 | Vector3 v1 = dest; |
---|
| 644 | v0.normalise(); |
---|
| 645 | v1.normalise(); |
---|
| 646 | |
---|
| 647 | Real d = v0.dotProduct(v1); |
---|
| 648 | // If dot == 1, vectors are the same |
---|
| 649 | if (d >= 1.0f) |
---|
| 650 | { |
---|
| 651 | return Quaternion::IDENTITY; |
---|
| 652 | } |
---|
| 653 | if (d < (1e-6f - 1.0f)) |
---|
| 654 | { |
---|
| 655 | if (fallbackAxis != Vector3::ZERO) |
---|
| 656 | { |
---|
| 657 | // rotate 180 degrees about the fallback axis |
---|
| 658 | q.FromAngleAxis(Radian(Math::PI), fallbackAxis); |
---|
| 659 | } |
---|
| 660 | else |
---|
| 661 | { |
---|
| 662 | // Generate an axis |
---|
| 663 | Vector3 axis = Vector3::UNIT_X.crossProduct(*this); |
---|
| 664 | if (axis.isZeroLength()) // pick another if colinear |
---|
| 665 | axis = Vector3::UNIT_Y.crossProduct(*this); |
---|
| 666 | axis.normalise(); |
---|
| 667 | q.FromAngleAxis(Radian(Math::PI), axis); |
---|
| 668 | } |
---|
| 669 | } |
---|
| 670 | else |
---|
| 671 | { |
---|
| 672 | Real s = Math::Sqrt( (1+d)*2 ); |
---|
| 673 | Real invs = 1 / s; |
---|
| 674 | |
---|
| 675 | Vector3 c = v0.crossProduct(v1); |
---|
| 676 | |
---|
| 677 | q.x = c.x * invs; |
---|
| 678 | q.y = c.y * invs; |
---|
| 679 | q.z = c.z * invs; |
---|
| 680 | q.w = s * 0.5; |
---|
| 681 | q.normalise(); |
---|
| 682 | } |
---|
| 683 | return q; |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | /** Returns true if this vector is zero length. */ |
---|
| 687 | inline bool isZeroLength(void) const |
---|
| 688 | { |
---|
| 689 | Real sqlen = (x * x) + (y * y) + (z * z); |
---|
| 690 | return (sqlen < (1e-06 * 1e-06)); |
---|
| 691 | |
---|
| 692 | } |
---|
| 693 | |
---|
| 694 | /** As normalise, except that this vector is unaffected and the |
---|
| 695 | normalised vector is returned as a copy. */ |
---|
| 696 | inline Vector3 normalisedCopy(void) const |
---|
| 697 | { |
---|
| 698 | Vector3 ret = *this; |
---|
| 699 | ret.normalise(); |
---|
| 700 | return ret; |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | /** Calculates a reflection vector to the plane with the given normal . |
---|
| 704 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. |
---|
| 705 | */ |
---|
| 706 | inline Vector3 reflect(const Vector3& normal) const |
---|
| 707 | { |
---|
| 708 | return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) ); |
---|
| 709 | } |
---|
| 710 | |
---|
| 711 | /** Returns whether this vector is within a positional tolerance |
---|
| 712 | of another vector. |
---|
| 713 | @param rhs The vector to compare with |
---|
| 714 | @param tolerance The amount that each element of the vector may vary by |
---|
| 715 | and still be considered equal |
---|
| 716 | */ |
---|
| 717 | inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const |
---|
| 718 | { |
---|
| 719 | return Math::RealEqual(x, rhs.x, tolerance) && |
---|
| 720 | Math::RealEqual(y, rhs.y, tolerance) && |
---|
| 721 | Math::RealEqual(z, rhs.z, tolerance); |
---|
| 722 | |
---|
| 723 | } |
---|
| 724 | |
---|
| 725 | /** Returns whether this vector is within a positional tolerance |
---|
| 726 | of another vector, also take scale of the vectors into account. |
---|
| 727 | @param rhs The vector to compare with |
---|
| 728 | @param tolerance The amount (related to the scale of vectors) that distance |
---|
| 729 | of the vector may vary by and still be considered close |
---|
| 730 | */ |
---|
| 731 | inline bool positionCloses(const Vector3& rhs, Real tolerance = 1e-03f) const |
---|
| 732 | { |
---|
| 733 | return squaredDistance(rhs) <= |
---|
| 734 | (squaredLength() + rhs.squaredLength()) * tolerance; |
---|
| 735 | } |
---|
| 736 | |
---|
| 737 | /** Returns whether this vector is within a directional tolerance |
---|
| 738 | of another vector. |
---|
| 739 | @param rhs The vector to compare with |
---|
| 740 | @param tolerance The maximum angle by which the vectors may vary and |
---|
| 741 | still be considered equal |
---|
| 742 | @note Both vectors should be normalised. |
---|
| 743 | */ |
---|
| 744 | inline bool directionEquals(const Vector3& rhs, |
---|
| 745 | const Radian& tolerance) const |
---|
| 746 | { |
---|
| 747 | Real dot = dotProduct(rhs); |
---|
| 748 | Radian angle = Math::ACos(dot); |
---|
| 749 | |
---|
| 750 | return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians(); |
---|
| 751 | |
---|
| 752 | } |
---|
| 753 | |
---|
| 754 | // special points |
---|
| 755 | static const Vector3 ZERO; |
---|
| 756 | static const Vector3 UNIT_X; |
---|
| 757 | static const Vector3 UNIT_Y; |
---|
| 758 | static const Vector3 UNIT_Z; |
---|
| 759 | static const Vector3 NEGATIVE_UNIT_X; |
---|
| 760 | static const Vector3 NEGATIVE_UNIT_Y; |
---|
| 761 | static const Vector3 NEGATIVE_UNIT_Z; |
---|
| 762 | static const Vector3 UNIT_SCALE; |
---|
| 763 | |
---|
| 764 | /** Function for writing to a stream. |
---|
| 765 | */ |
---|
| 766 | inline _OgreExport friend std::ostream& operator << |
---|
| 767 | ( std::ostream& o, const Vector3& v ) |
---|
| 768 | { |
---|
| 769 | o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")"; |
---|
| 770 | return o; |
---|
| 771 | } |
---|
| 772 | }; |
---|
| 773 | |
---|
| 774 | } |
---|
| 775 | #endif |
---|