Changeset 9639 in orxonox.OLD for branches/proxy/src/lib/math
- Timestamp:
- Jul 31, 2006, 9:30:52 AM (18 years ago)
- Location:
- branches/proxy/src/lib/math
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/proxy/src/lib/math/quaternion.cc
r9110 r9639 336 336 // check the diagonal 337 337 float tr = mat[0][0] + mat[1][1] + mat[2][2]; 338 if( tr > 0.0f) { 338 if( tr > 0.0f) 339 { 339 340 float s = (float)sqrtf(tr + 1.0f); 340 341 this->w = s * 0.5f; … … 372 373 } 373 374 375 Quaternion Quaternion::lookAt(Vector from, Vector to, Vector up) 376 { 377 Vector n = to - from; 378 n.normalize(); 379 Vector v = n.cross(up); 380 v.normalize(); 381 Vector u = v.cross(n); 382 383 float matrix[3][3]; 384 matrix[0][0] = v.x; 385 matrix[0][1] = v.y; 386 matrix[0][2] = v.z; 387 matrix[1][0] = u.x; 388 matrix[1][1] = u.y; 389 matrix[1][2] = u.z; 390 matrix[2][0] = -n.x; 391 matrix[2][1] = -n.y; 392 matrix[2][2] = -n.z; 393 394 Quaternion quat; 395 quat.from3x3(matrix); 396 return quat; 397 } 398 399 374 400 /** 375 401 * @brief outputs some nice formated debug information about this quaternion -
branches/proxy/src/lib/math/quaternion.h
r9110 r9639 33 33 class Quaternion 34 34 { 35 public:36 /** creates a Default quaternion (multiplicational identity Quaternion)*/37 inline Quaternion () { w = 1; v = Vector(0,0,0); }38 /** Copy constructor @param q the Quaternion to copy. */39 inline Quaternion (const Quaternion& q) { w = q.w; v = q.v; };40 /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */41 inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; }42 /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */43 inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2.0); v = axis * sin(angle/2.0); }44 Quaternion (const Vector& dir, const Vector& up);45 Quaternion (float roll, float pitch, float yaw);35 public: 36 /** creates a Default quaternion (multiplicational identity Quaternion)*/ 37 inline Quaternion () { w = 1; v = Vector(0,0,0); } 38 /** Copy constructor @param q the Quaternion to copy. */ 39 inline Quaternion (const Quaternion& q) { w = q.w; v = q.v; }; 40 /** creates a Quaternion looking into the direction v @param v: the direction @param f: the value */ 41 inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } 42 /** turns a rotation along an axis into a Quaternion @param angle: the amount of radians to rotate @param axis: the axis to rotate around */ 43 inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2.0); v = axis * sin(angle/2.0); } 44 Quaternion (const Vector& dir, const Vector& up); 45 Quaternion (float roll, float pitch, float yaw); 46 46 47 void from3x3(float m[3][3]);48 void from4x4(float m[4][4]);47 void from3x3(float m[3][3]); 48 void from4x4(float m[4][4]); 49 49 50 50 51 /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */51 /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ 52 52 inline bool operator== (const Quaternion& q) const { return (unlikely(this->v==q.v&&this->w==q.w))?true:false; }; 53 /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */53 /** @param q: the Quaternion to compare with this one. @returns true if the Quaternions are the same, false otherwise */ 54 54 inline bool operator!= (const Quaternion& q) const { return (unlikely(this->v!=q.v||this->w!=q.w))?true:false; }; 55 /** @param f: a real value @return a Quaternion containing the quotient */ 56 inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; 57 /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ 58 inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} 59 /** @param f: a real value @return a Quaternion containing the product */ 60 inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; 61 /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ 62 inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} 63 /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ 64 Quaternion operator* (const Quaternion& q) const { return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, 65 this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, 66 this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), 67 this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); }; 68 /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ 69 inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; 70 /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ 71 inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; 72 /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ 73 inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; 74 /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ 75 inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; 76 /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ 77 inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; 78 /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ 79 inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } 80 /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ 81 inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; 82 /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ 83 inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} 84 /** conjugates this Quaternion @returns the conjugate */ 85 inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; 86 /** @returns the norm of The Quaternion */ 87 inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; 88 /** @returns the inverted Quaterntion of this */ 89 inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; 90 /** @returns the dot Product of a Quaternion */ 91 inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; }; 92 /** @retuns the Distance between two Quaternions */ 93 inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); }; 94 /** @param v: the Vector @return a new Vector representing v rotated by the Quaternion */ 95 inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; 96 void matrix (float m[4][4]) const; 97 /** @returns the normalized Quaternion (|this|) */ 98 inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; 99 /** normalizes the current Quaternion */ 100 inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; 55 /** @param f: a real value @return a Quaternion containing the quotient */ 56 inline Quaternion operator/ (const float& f) const { return (unlikely(f==0.0)) ? Quaternion() : Quaternion(this->v/f, this->w/f); }; 57 /** @param f: the value to divide by @returns the quaternion devided by f (this /= f) */ 58 inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} 59 /** @param f: a real value @return a Quaternion containing the product */ 60 inline Quaternion operator* (const float& f) const { return Quaternion(this->v*f, this->w*f); }; 61 /** @param f: the value to multiply by @returns the quaternion multiplied by f (this *= f) */ 62 inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} 63 /** @param q: another Quaternion to rotate this by @return a quaternion that represents the first one rotated by the second one (WARUNING: this operation is not commutative! e.g. (A*B) != (B*A)) */ 64 Quaternion operator* (const Quaternion& q) const 65 { 66 return Quaternion(Vector(this->w*q.v.x + this->v.x*q.w + this->v.y*q.v.z - this->v.z*q.v.y, 67 this->w*q.v.y + this->v.y*q.w + this->v.z*q.v.x - this->v.x*q.v.z, 68 this->w*q.v.z + this->v.z*q.w + this->v.x*q.v.y - this->v.y*q.v.x), 69 this->w*q.w - this->v.x*q.v.x - this->v.y*q.v.y - this->v.z*q.v.z); 70 }; 71 /** @param q: the Quaternion to multiply by @returns the quaternion multiplied by q (this *= q) */ 72 inline const Quaternion& operator*= (const Quaternion& q) {*this = *this * q; return *this; }; 73 /** @param q the Quaternion by which to devide @returns the division from this by q (this / q) */ 74 inline Quaternion operator/ (const Quaternion& q) const { return *this * q.inverse(); }; 75 /** @param q the Quaternion by which to devide @returns the division from this by q (this /= q) */ 76 inline const Quaternion& operator/= (const Quaternion& q) { *this = *this * q.inverse(); return *this; }; 77 /** @param q the Quaternion to add to this @returns the quaternion added with q (this + q) */ 78 inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; 79 /** @param q the Quaternion to add to this @returns the quaternion added with q (this += q) */ 80 inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; 81 /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this - q) */ 82 inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } 83 /** @param q the Quaternion to substrace from this @returns the quaternion substracted by q (this -= q) */ 84 inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; 85 /** copy constructor @param q: the Quaternion to set this to. @returns the Quaternion q (or this) */ 86 inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} 87 /** conjugates this Quaternion @returns the conjugate */ 88 inline Quaternion conjugate () const { return Quaternion(Vector(-v.x, -v.y, -v.z), this->w); }; 89 /** @returns the norm of The Quaternion */ 90 inline float norm () const { return sqrt(w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; 91 /** @returns the inverted Quaterntion of this */ 92 inline Quaternion inverse () const { return conjugate() / (w*w + v.x*v.x + v.y*v.y + v.z*v.z); }; 93 /** @returns the dot Product of a Quaternion */ 94 inline float dot (const Quaternion& q) const { return v.x*q.v.x + v.y*q.v.y + v.z*q.v.z + w*q.w; }; 95 /** @retuns the Distance between two Quaternions */ 96 inline float distance(const Quaternion& q) const { return 2*acos(fabsf(this->dot(q))); }; 97 /** @param v: the Vector @return a new Vector representing v rotated by the Quaternion */ 98 inline Vector apply (const Vector& v) const { return (*this * Quaternion(v, 0) * conjugate()).v; }; 99 void matrix (float m[4][4]) const; 100 /** @returns the normalized Quaternion (|this|) */ 101 inline Quaternion getNormalized() const { float n = this->norm(); return Quaternion(this->v/n, this->w/n); }; 102 /** normalizes the current Quaternion */ 103 inline void normalize() { float n = this->norm(); this->v /= n; this->w/=n; }; 101 104 102 float getHeading() const;103 Quaternion getHeadingQuat() const;104 float getAttitude() const;105 Quaternion getAttitudeQuat() const;106 float getBank() const;107 Quaternion getBankQuat() const;108 /** @returns the rotational axis of this Quaternion */109 inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ };110 /** @returns the rotational angle of this Quaternion around getSpacialAxis() !! IN DEGREE !! */111 inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); };105 float getHeading() const; 106 Quaternion getHeadingQuat() const; 107 float getAttitude() const; 108 Quaternion getAttitudeQuat() const; 109 float getBank() const; 110 Quaternion getBankQuat() const; 111 /** @returns the rotational axis of this Quaternion */ 112 inline Vector getSpacialAxis() const { return this->v / sin(acos(w));/*sqrt(v.x*v.x + v.y*v.y + v.z+v.z);*/ }; 113 /** @returns the rotational angle of this Quaternion around getSpacialAxis() !! IN DEGREE !! */ 114 inline float getSpacialAxisAngle() const { return 360.0 / M_PI * acos( this->w ); }; 112 115 113 116 114 inline void slerpTo(const Quaternion& toQuat, float t); 115 static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); 116 117 void debug() const; 118 void debug2() const; 117 inline void slerpTo(const Quaternion& toQuat, float t); 118 static Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); 119 119 120 120 121 public: 122 Vector v; //!< Imaginary Vector 123 float w; //!< Real part of the number 121 static Quaternion lookAt(Vector from, Vector to, Vector up); 122 123 void debug() const; 124 void debug2() const; 125 126 127 public: 128 Vector v; //!< Imaginary Vector 129 float w; //!< Real part of the number 124 130 }; 125 131
Note: See TracChangeset
for help on using the changeset viewer.