[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | #include "btQuantizedBvh.h" |
---|
| 17 | |
---|
| 18 | #include "LinearMath/btAabbUtil2.h" |
---|
| 19 | #include "LinearMath/btIDebugDraw.h" |
---|
[7983] | 20 | #include "LinearMath/btSerializer.h" |
---|
[1963] | 21 | |
---|
[2430] | 22 | #define RAYAABB2 |
---|
[1963] | 23 | |
---|
[2430] | 24 | btQuantizedBvh::btQuantizedBvh() : |
---|
| 25 | m_bulletVersion(BT_BULLET_VERSION), |
---|
| 26 | m_useQuantization(false), |
---|
[1963] | 27 | //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) |
---|
| 28 | m_traversalMode(TRAVERSAL_STACKLESS) |
---|
| 29 | //m_traversalMode(TRAVERSAL_RECURSIVE) |
---|
| 30 | ,m_subtreeHeaderCount(0) //PCK: add this line |
---|
[2430] | 31 | { |
---|
| 32 | m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY); |
---|
| 33 | m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY); |
---|
[1963] | 34 | } |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | void btQuantizedBvh::buildInternal() |
---|
| 41 | { |
---|
| 42 | ///assumes that caller filled in the m_quantizedLeafNodes |
---|
| 43 | m_useQuantization = true; |
---|
| 44 | int numLeafNodes = 0; |
---|
| 45 | |
---|
| 46 | if (m_useQuantization) |
---|
| 47 | { |
---|
| 48 | //now we have an array of leafnodes in m_leafNodes |
---|
| 49 | numLeafNodes = m_quantizedLeafNodes.size(); |
---|
| 50 | |
---|
| 51 | m_quantizedContiguousNodes.resize(2*numLeafNodes); |
---|
| 52 | |
---|
| 53 | } |
---|
| 54 | |
---|
| 55 | m_curNodeIndex = 0; |
---|
| 56 | |
---|
| 57 | buildTree(0,numLeafNodes); |
---|
| 58 | |
---|
| 59 | ///if the entire tree is small then subtree size, we need to create a header info for the tree |
---|
| 60 | if(m_useQuantization && !m_SubtreeHeaders.size()) |
---|
| 61 | { |
---|
| 62 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
| 63 | subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); |
---|
| 64 | subtree.m_rootNodeIndex = 0; |
---|
| 65 | subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | //PCK: update the copy of the size |
---|
| 69 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
| 70 | |
---|
| 71 | //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary |
---|
| 72 | m_quantizedLeafNodes.clear(); |
---|
| 73 | m_leafNodes.clear(); |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | ///just for debugging, to visualize the individual patches/subtrees |
---|
| 79 | #ifdef DEBUG_PATCH_COLORS |
---|
| 80 | btVector3 color[4]= |
---|
| 81 | { |
---|
[7983] | 82 | btVector3(1,0,0), |
---|
| 83 | btVector3(0,1,0), |
---|
| 84 | btVector3(0,0,1), |
---|
| 85 | btVector3(0,1,1) |
---|
[1963] | 86 | }; |
---|
| 87 | #endif //DEBUG_PATCH_COLORS |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) |
---|
| 92 | { |
---|
| 93 | //enlarge the AABB to avoid division by zero when initializing the quantization values |
---|
| 94 | btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); |
---|
| 95 | m_bvhAabbMin = bvhAabbMin - clampValue; |
---|
| 96 | m_bvhAabbMax = bvhAabbMax + clampValue; |
---|
| 97 | btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; |
---|
| 98 | m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; |
---|
| 99 | m_useQuantization = true; |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | btQuantizedBvh::~btQuantizedBvh() |
---|
| 106 | { |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | #ifdef DEBUG_TREE_BUILDING |
---|
| 110 | int gStackDepth = 0; |
---|
| 111 | int gMaxStackDepth = 0; |
---|
| 112 | #endif //DEBUG_TREE_BUILDING |
---|
| 113 | |
---|
| 114 | void btQuantizedBvh::buildTree (int startIndex,int endIndex) |
---|
| 115 | { |
---|
| 116 | #ifdef DEBUG_TREE_BUILDING |
---|
| 117 | gStackDepth++; |
---|
| 118 | if (gStackDepth > gMaxStackDepth) |
---|
| 119 | gMaxStackDepth = gStackDepth; |
---|
| 120 | #endif //DEBUG_TREE_BUILDING |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | int splitAxis, splitIndex, i; |
---|
| 124 | int numIndices =endIndex-startIndex; |
---|
| 125 | int curIndex = m_curNodeIndex; |
---|
| 126 | |
---|
[2430] | 127 | btAssert(numIndices>0); |
---|
[1963] | 128 | |
---|
| 129 | if (numIndices==1) |
---|
| 130 | { |
---|
| 131 | #ifdef DEBUG_TREE_BUILDING |
---|
| 132 | gStackDepth--; |
---|
| 133 | #endif //DEBUG_TREE_BUILDING |
---|
| 134 | |
---|
| 135 | assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); |
---|
| 136 | |
---|
| 137 | m_curNodeIndex++; |
---|
| 138 | return; |
---|
| 139 | } |
---|
| 140 | //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. |
---|
| 141 | |
---|
| 142 | splitAxis = calcSplittingAxis(startIndex,endIndex); |
---|
| 143 | |
---|
| 144 | splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); |
---|
| 145 | |
---|
| 146 | int internalNodeIndex = m_curNodeIndex; |
---|
| 147 | |
---|
[2430] | 148 | //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. |
---|
| 149 | //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values |
---|
| 150 | setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization |
---|
| 151 | setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization |
---|
[1963] | 152 | |
---|
[2430] | 153 | |
---|
[1963] | 154 | for (i=startIndex;i<endIndex;i++) |
---|
| 155 | { |
---|
| 156 | mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | m_curNodeIndex++; |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | //internalNode->m_escapeIndex; |
---|
| 163 | |
---|
| 164 | int leftChildNodexIndex = m_curNodeIndex; |
---|
| 165 | |
---|
| 166 | //build left child tree |
---|
| 167 | buildTree(startIndex,splitIndex); |
---|
| 168 | |
---|
| 169 | int rightChildNodexIndex = m_curNodeIndex; |
---|
| 170 | //build right child tree |
---|
| 171 | buildTree(splitIndex,endIndex); |
---|
| 172 | |
---|
| 173 | #ifdef DEBUG_TREE_BUILDING |
---|
| 174 | gStackDepth--; |
---|
| 175 | #endif //DEBUG_TREE_BUILDING |
---|
| 176 | |
---|
| 177 | int escapeIndex = m_curNodeIndex - curIndex; |
---|
| 178 | |
---|
| 179 | if (m_useQuantization) |
---|
| 180 | { |
---|
| 181 | //escapeIndex is the number of nodes of this subtree |
---|
| 182 | const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); |
---|
| 183 | const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; |
---|
| 184 | if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) |
---|
| 185 | { |
---|
| 186 | updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); |
---|
| 187 | } |
---|
[2430] | 188 | } else |
---|
| 189 | { |
---|
| 190 | |
---|
[1963] | 191 | } |
---|
| 192 | |
---|
| 193 | setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); |
---|
| 194 | |
---|
| 195 | } |
---|
| 196 | |
---|
| 197 | void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) |
---|
| 198 | { |
---|
| 199 | btAssert(m_useQuantization); |
---|
| 200 | |
---|
| 201 | btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; |
---|
| 202 | int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); |
---|
| 203 | int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
| 204 | |
---|
| 205 | btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; |
---|
| 206 | int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); |
---|
| 207 | int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); |
---|
| 208 | |
---|
| 209 | if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
| 210 | { |
---|
| 211 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
| 212 | subtree.setAabbFromQuantizeNode(leftChildNode); |
---|
| 213 | subtree.m_rootNodeIndex = leftChildNodexIndex; |
---|
| 214 | subtree.m_subtreeSize = leftSubTreeSize; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) |
---|
| 218 | { |
---|
| 219 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); |
---|
| 220 | subtree.setAabbFromQuantizeNode(rightChildNode); |
---|
| 221 | subtree.m_rootNodeIndex = rightChildNodexIndex; |
---|
| 222 | subtree.m_subtreeSize = rightSubTreeSize; |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | //PCK: update the copy of the size |
---|
| 226 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) |
---|
| 231 | { |
---|
| 232 | int i; |
---|
| 233 | int splitIndex =startIndex; |
---|
| 234 | int numIndices = endIndex - startIndex; |
---|
| 235 | btScalar splitValue; |
---|
| 236 | |
---|
| 237 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
| 238 | for (i=startIndex;i<endIndex;i++) |
---|
| 239 | { |
---|
| 240 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
| 241 | means+=center; |
---|
| 242 | } |
---|
| 243 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
| 244 | |
---|
| 245 | splitValue = means[splitAxis]; |
---|
| 246 | |
---|
| 247 | //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. |
---|
| 248 | for (i=startIndex;i<endIndex;i++) |
---|
| 249 | { |
---|
| 250 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
| 251 | if (center[splitAxis] > splitValue) |
---|
| 252 | { |
---|
| 253 | //swap |
---|
| 254 | swapLeafNodes(i,splitIndex); |
---|
| 255 | splitIndex++; |
---|
| 256 | } |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex |
---|
| 260 | //otherwise the tree-building might fail due to stack-overflows in certain cases. |
---|
| 261 | //unbalanced1 is unsafe: it can cause stack overflows |
---|
| 262 | //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); |
---|
| 263 | |
---|
| 264 | //unbalanced2 should work too: always use center (perfect balanced trees) |
---|
| 265 | //bool unbalanced2 = true; |
---|
| 266 | |
---|
| 267 | //this should be safe too: |
---|
| 268 | int rangeBalancedIndices = numIndices/3; |
---|
| 269 | bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); |
---|
| 270 | |
---|
| 271 | if (unbalanced) |
---|
| 272 | { |
---|
| 273 | splitIndex = startIndex+ (numIndices>>1); |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); |
---|
| 277 | (void)unbal; |
---|
| 278 | btAssert(!unbal); |
---|
| 279 | |
---|
| 280 | return splitIndex; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | |
---|
| 284 | int btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) |
---|
| 285 | { |
---|
| 286 | int i; |
---|
| 287 | |
---|
| 288 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
| 289 | btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); |
---|
| 290 | int numIndices = endIndex-startIndex; |
---|
| 291 | |
---|
| 292 | for (i=startIndex;i<endIndex;i++) |
---|
| 293 | { |
---|
| 294 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
| 295 | means+=center; |
---|
| 296 | } |
---|
| 297 | means *= (btScalar(1.)/(btScalar)numIndices); |
---|
| 298 | |
---|
| 299 | for (i=startIndex;i<endIndex;i++) |
---|
| 300 | { |
---|
| 301 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); |
---|
| 302 | btVector3 diff2 = center-means; |
---|
| 303 | diff2 = diff2 * diff2; |
---|
| 304 | variance += diff2; |
---|
| 305 | } |
---|
| 306 | variance *= (btScalar(1.)/ ((btScalar)numIndices-1) ); |
---|
| 307 | |
---|
| 308 | return variance.maxAxis(); |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
| 314 | { |
---|
| 315 | //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) |
---|
| 316 | |
---|
| 317 | if (m_useQuantization) |
---|
| 318 | { |
---|
| 319 | ///quantize query AABB |
---|
| 320 | unsigned short int quantizedQueryAabbMin[3]; |
---|
| 321 | unsigned short int quantizedQueryAabbMax[3]; |
---|
| 322 | quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); |
---|
| 323 | quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); |
---|
| 324 | |
---|
| 325 | switch (m_traversalMode) |
---|
| 326 | { |
---|
| 327 | case TRAVERSAL_STACKLESS: |
---|
| 328 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); |
---|
| 329 | break; |
---|
| 330 | case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: |
---|
| 331 | walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
| 332 | break; |
---|
| 333 | case TRAVERSAL_RECURSIVE: |
---|
| 334 | { |
---|
| 335 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; |
---|
| 336 | walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
| 337 | } |
---|
| 338 | break; |
---|
| 339 | default: |
---|
| 340 | //unsupported |
---|
| 341 | btAssert(0); |
---|
| 342 | } |
---|
| 343 | } else |
---|
| 344 | { |
---|
| 345 | walkStacklessTree(nodeCallback,aabbMin,aabbMax); |
---|
| 346 | } |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | |
---|
| 350 | int maxIterations = 0; |
---|
| 351 | |
---|
[2430] | 352 | |
---|
[1963] | 353 | void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
| 354 | { |
---|
| 355 | btAssert(!m_useQuantization); |
---|
| 356 | |
---|
| 357 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; |
---|
| 358 | int escapeIndex, curIndex = 0; |
---|
| 359 | int walkIterations = 0; |
---|
| 360 | bool isLeafNode; |
---|
| 361 | //PCK: unsigned instead of bool |
---|
| 362 | unsigned aabbOverlap; |
---|
| 363 | |
---|
| 364 | while (curIndex < m_curNodeIndex) |
---|
| 365 | { |
---|
| 366 | //catch bugs in tree data |
---|
[2430] | 367 | btAssert (walkIterations < m_curNodeIndex); |
---|
[1963] | 368 | |
---|
| 369 | walkIterations++; |
---|
| 370 | aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); |
---|
| 371 | isLeafNode = rootNode->m_escapeIndex == -1; |
---|
| 372 | |
---|
| 373 | //PCK: unsigned instead of bool |
---|
| 374 | if (isLeafNode && (aabbOverlap != 0)) |
---|
| 375 | { |
---|
| 376 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | //PCK: unsigned instead of bool |
---|
| 380 | if ((aabbOverlap != 0) || isLeafNode) |
---|
| 381 | { |
---|
| 382 | rootNode++; |
---|
| 383 | curIndex++; |
---|
| 384 | } else |
---|
| 385 | { |
---|
| 386 | escapeIndex = rootNode->m_escapeIndex; |
---|
| 387 | rootNode += escapeIndex; |
---|
| 388 | curIndex += escapeIndex; |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | if (maxIterations < walkIterations) |
---|
| 392 | maxIterations = walkIterations; |
---|
| 393 | |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | /* |
---|
| 397 | ///this was the original recursive traversal, before we optimized towards stackless traversal |
---|
| 398 | void btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
| 399 | { |
---|
| 400 | bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); |
---|
| 401 | if (aabbOverlap) |
---|
| 402 | { |
---|
| 403 | isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); |
---|
| 404 | if (isLeafNode) |
---|
| 405 | { |
---|
| 406 | nodeCallback->processNode(rootNode); |
---|
| 407 | } else |
---|
| 408 | { |
---|
| 409 | walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); |
---|
| 410 | walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); |
---|
| 411 | } |
---|
| 412 | } |
---|
| 413 | |
---|
| 414 | } |
---|
| 415 | */ |
---|
| 416 | |
---|
| 417 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
| 418 | { |
---|
| 419 | btAssert(m_useQuantization); |
---|
| 420 | |
---|
| 421 | bool isLeafNode; |
---|
| 422 | //PCK: unsigned instead of bool |
---|
| 423 | unsigned aabbOverlap; |
---|
| 424 | |
---|
| 425 | //PCK: unsigned instead of bool |
---|
| 426 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); |
---|
| 427 | isLeafNode = currentNode->isLeafNode(); |
---|
| 428 | |
---|
| 429 | //PCK: unsigned instead of bool |
---|
| 430 | if (aabbOverlap != 0) |
---|
| 431 | { |
---|
| 432 | if (isLeafNode) |
---|
| 433 | { |
---|
| 434 | nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); |
---|
| 435 | } else |
---|
| 436 | { |
---|
| 437 | //process left and right children |
---|
| 438 | const btQuantizedBvhNode* leftChildNode = currentNode+1; |
---|
| 439 | walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
| 440 | |
---|
| 441 | const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); |
---|
| 442 | walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); |
---|
| 443 | } |
---|
| 444 | } |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | |
---|
| 448 | |
---|
[2430] | 449 | void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const |
---|
| 450 | { |
---|
| 451 | btAssert(!m_useQuantization); |
---|
[1963] | 452 | |
---|
[2430] | 453 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; |
---|
| 454 | int escapeIndex, curIndex = 0; |
---|
| 455 | int walkIterations = 0; |
---|
| 456 | bool isLeafNode; |
---|
| 457 | //PCK: unsigned instead of bool |
---|
| 458 | unsigned aabbOverlap=0; |
---|
| 459 | unsigned rayBoxOverlap=0; |
---|
| 460 | btScalar lambda_max = 1.0; |
---|
| 461 | |
---|
| 462 | /* Quick pruning by quantized box */ |
---|
| 463 | btVector3 rayAabbMin = raySource; |
---|
| 464 | btVector3 rayAabbMax = raySource; |
---|
| 465 | rayAabbMin.setMin(rayTarget); |
---|
| 466 | rayAabbMax.setMax(rayTarget); |
---|
[1963] | 467 | |
---|
[2430] | 468 | /* Add box cast extents to bounding box */ |
---|
| 469 | rayAabbMin += aabbMin; |
---|
| 470 | rayAabbMax += aabbMax; |
---|
| 471 | |
---|
| 472 | #ifdef RAYAABB2 |
---|
| 473 | btVector3 rayDir = (rayTarget-raySource); |
---|
| 474 | rayDir.normalize (); |
---|
| 475 | lambda_max = rayDir.dot(rayTarget-raySource); |
---|
| 476 | ///what about division by zero? --> just set rayDirection[i] to 1.0 |
---|
| 477 | btVector3 rayDirectionInverse; |
---|
[7983] | 478 | rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0]; |
---|
| 479 | rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1]; |
---|
| 480 | rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2]; |
---|
[2430] | 481 | unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; |
---|
| 482 | #endif |
---|
| 483 | |
---|
| 484 | btVector3 bounds[2]; |
---|
| 485 | |
---|
| 486 | while (curIndex < m_curNodeIndex) |
---|
| 487 | { |
---|
| 488 | btScalar param = 1.0; |
---|
| 489 | //catch bugs in tree data |
---|
| 490 | btAssert (walkIterations < m_curNodeIndex); |
---|
| 491 | |
---|
| 492 | walkIterations++; |
---|
| 493 | |
---|
| 494 | bounds[0] = rootNode->m_aabbMinOrg; |
---|
| 495 | bounds[1] = rootNode->m_aabbMaxOrg; |
---|
| 496 | /* Add box cast extents */ |
---|
[7983] | 497 | bounds[0] -= aabbMax; |
---|
| 498 | bounds[1] -= aabbMin; |
---|
[2430] | 499 | |
---|
| 500 | aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); |
---|
| 501 | //perhaps profile if it is worth doing the aabbOverlap test first |
---|
| 502 | |
---|
| 503 | #ifdef RAYAABB2 |
---|
| 504 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method |
---|
| 505 | ///thanks Joerg/hiker for the reproduction case! |
---|
| 506 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 |
---|
| 507 | rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; |
---|
| 508 | |
---|
| 509 | #else |
---|
| 510 | btVector3 normal; |
---|
| 511 | rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal); |
---|
| 512 | #endif |
---|
| 513 | |
---|
| 514 | isLeafNode = rootNode->m_escapeIndex == -1; |
---|
| 515 | |
---|
| 516 | //PCK: unsigned instead of bool |
---|
| 517 | if (isLeafNode && (rayBoxOverlap != 0)) |
---|
| 518 | { |
---|
| 519 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | //PCK: unsigned instead of bool |
---|
| 523 | if ((rayBoxOverlap != 0) || isLeafNode) |
---|
| 524 | { |
---|
| 525 | rootNode++; |
---|
| 526 | curIndex++; |
---|
| 527 | } else |
---|
| 528 | { |
---|
| 529 | escapeIndex = rootNode->m_escapeIndex; |
---|
| 530 | rootNode += escapeIndex; |
---|
| 531 | curIndex += escapeIndex; |
---|
| 532 | } |
---|
| 533 | } |
---|
| 534 | if (maxIterations < walkIterations) |
---|
| 535 | maxIterations = walkIterations; |
---|
| 536 | |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | |
---|
[1963] | 541 | void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const |
---|
| 542 | { |
---|
| 543 | btAssert(m_useQuantization); |
---|
| 544 | |
---|
| 545 | int curIndex = startNodeIndex; |
---|
| 546 | int walkIterations = 0; |
---|
| 547 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
| 548 | (void)subTreeSize; |
---|
| 549 | |
---|
| 550 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
| 551 | int escapeIndex; |
---|
| 552 | |
---|
| 553 | bool isLeafNode; |
---|
| 554 | //PCK: unsigned instead of bool |
---|
| 555 | unsigned boxBoxOverlap = 0; |
---|
| 556 | unsigned rayBoxOverlap = 0; |
---|
| 557 | |
---|
| 558 | btScalar lambda_max = 1.0; |
---|
[2430] | 559 | |
---|
[1963] | 560 | #ifdef RAYAABB2 |
---|
| 561 | btVector3 rayDirection = (rayTarget-raySource); |
---|
| 562 | rayDirection.normalize (); |
---|
| 563 | lambda_max = rayDirection.dot(rayTarget-raySource); |
---|
| 564 | ///what about division by zero? --> just set rayDirection[i] to 1.0 |
---|
[7983] | 565 | rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0]; |
---|
| 566 | rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[1]; |
---|
| 567 | rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[2]; |
---|
[1963] | 568 | unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; |
---|
| 569 | #endif |
---|
| 570 | |
---|
| 571 | /* Quick pruning by quantized box */ |
---|
| 572 | btVector3 rayAabbMin = raySource; |
---|
| 573 | btVector3 rayAabbMax = raySource; |
---|
| 574 | rayAabbMin.setMin(rayTarget); |
---|
| 575 | rayAabbMax.setMax(rayTarget); |
---|
| 576 | |
---|
| 577 | /* Add box cast extents to bounding box */ |
---|
| 578 | rayAabbMin += aabbMin; |
---|
| 579 | rayAabbMax += aabbMax; |
---|
| 580 | |
---|
| 581 | unsigned short int quantizedQueryAabbMin[3]; |
---|
| 582 | unsigned short int quantizedQueryAabbMax[3]; |
---|
| 583 | quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); |
---|
| 584 | quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); |
---|
| 585 | |
---|
| 586 | while (curIndex < endNodeIndex) |
---|
| 587 | { |
---|
| 588 | |
---|
| 589 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
| 590 | #ifdef VISUALLY_ANALYZE_BVH |
---|
| 591 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
| 592 | static int drawPatch = 0; |
---|
| 593 | //need some global access to a debugDrawer |
---|
| 594 | extern btIDebugDraw* debugDrawerPtr; |
---|
| 595 | if (curIndex==drawPatch) |
---|
| 596 | { |
---|
| 597 | btVector3 aabbMin,aabbMax; |
---|
| 598 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
| 599 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
| 600 | btVector3 color(1,0,0); |
---|
| 601 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
| 602 | } |
---|
| 603 | #endif//VISUALLY_ANALYZE_BVH |
---|
| 604 | |
---|
| 605 | //catch bugs in tree data |
---|
[2430] | 606 | btAssert (walkIterations < subTreeSize); |
---|
[1963] | 607 | |
---|
| 608 | walkIterations++; |
---|
| 609 | //PCK: unsigned instead of bool |
---|
| 610 | // only interested if this is closer than any previous hit |
---|
| 611 | btScalar param = 1.0; |
---|
| 612 | rayBoxOverlap = 0; |
---|
| 613 | boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
| 614 | isLeafNode = rootNode->isLeafNode(); |
---|
| 615 | if (boxBoxOverlap) |
---|
| 616 | { |
---|
| 617 | btVector3 bounds[2]; |
---|
| 618 | bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); |
---|
| 619 | bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); |
---|
| 620 | /* Add box cast extents */ |
---|
[7983] | 621 | bounds[0] -= aabbMax; |
---|
| 622 | bounds[1] -= aabbMin; |
---|
[1963] | 623 | btVector3 normal; |
---|
| 624 | #if 0 |
---|
| 625 | bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); |
---|
| 626 | bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
| 627 | if (ra2 != ra) |
---|
| 628 | { |
---|
| 629 | printf("functions don't match\n"); |
---|
| 630 | } |
---|
| 631 | #endif |
---|
| 632 | #ifdef RAYAABB2 |
---|
| 633 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method |
---|
| 634 | ///thanks Joerg/hiker for the reproduction case! |
---|
| 635 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 |
---|
| 636 | |
---|
[2430] | 637 | //BT_PROFILE("btRayAabb2"); |
---|
[1963] | 638 | rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); |
---|
[2430] | 639 | |
---|
[1963] | 640 | #else |
---|
| 641 | rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); |
---|
| 642 | #endif |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | if (isLeafNode && rayBoxOverlap) |
---|
| 646 | { |
---|
| 647 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | //PCK: unsigned instead of bool |
---|
| 651 | if ((rayBoxOverlap != 0) || isLeafNode) |
---|
| 652 | { |
---|
| 653 | rootNode++; |
---|
| 654 | curIndex++; |
---|
| 655 | } else |
---|
| 656 | { |
---|
| 657 | escapeIndex = rootNode->getEscapeIndex(); |
---|
| 658 | rootNode += escapeIndex; |
---|
| 659 | curIndex += escapeIndex; |
---|
| 660 | } |
---|
| 661 | } |
---|
| 662 | if (maxIterations < walkIterations) |
---|
| 663 | maxIterations = walkIterations; |
---|
| 664 | |
---|
| 665 | } |
---|
| 666 | |
---|
| 667 | void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const |
---|
| 668 | { |
---|
| 669 | btAssert(m_useQuantization); |
---|
| 670 | |
---|
| 671 | int curIndex = startNodeIndex; |
---|
| 672 | int walkIterations = 0; |
---|
| 673 | int subTreeSize = endNodeIndex - startNodeIndex; |
---|
| 674 | (void)subTreeSize; |
---|
| 675 | |
---|
| 676 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; |
---|
| 677 | int escapeIndex; |
---|
| 678 | |
---|
| 679 | bool isLeafNode; |
---|
| 680 | //PCK: unsigned instead of bool |
---|
| 681 | unsigned aabbOverlap; |
---|
| 682 | |
---|
| 683 | while (curIndex < endNodeIndex) |
---|
| 684 | { |
---|
| 685 | |
---|
| 686 | //#define VISUALLY_ANALYZE_BVH 1 |
---|
| 687 | #ifdef VISUALLY_ANALYZE_BVH |
---|
| 688 | //some code snippet to debugDraw aabb, to visually analyze bvh structure |
---|
| 689 | static int drawPatch = 0; |
---|
| 690 | //need some global access to a debugDrawer |
---|
| 691 | extern btIDebugDraw* debugDrawerPtr; |
---|
| 692 | if (curIndex==drawPatch) |
---|
| 693 | { |
---|
| 694 | btVector3 aabbMin,aabbMax; |
---|
| 695 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); |
---|
| 696 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); |
---|
| 697 | btVector3 color(1,0,0); |
---|
| 698 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); |
---|
| 699 | } |
---|
| 700 | #endif//VISUALLY_ANALYZE_BVH |
---|
| 701 | |
---|
| 702 | //catch bugs in tree data |
---|
[2430] | 703 | btAssert (walkIterations < subTreeSize); |
---|
[1963] | 704 | |
---|
| 705 | walkIterations++; |
---|
| 706 | //PCK: unsigned instead of bool |
---|
| 707 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); |
---|
| 708 | isLeafNode = rootNode->isLeafNode(); |
---|
| 709 | |
---|
| 710 | if (isLeafNode && aabbOverlap) |
---|
| 711 | { |
---|
| 712 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); |
---|
| 713 | } |
---|
| 714 | |
---|
| 715 | //PCK: unsigned instead of bool |
---|
| 716 | if ((aabbOverlap != 0) || isLeafNode) |
---|
| 717 | { |
---|
| 718 | rootNode++; |
---|
| 719 | curIndex++; |
---|
| 720 | } else |
---|
| 721 | { |
---|
| 722 | escapeIndex = rootNode->getEscapeIndex(); |
---|
| 723 | rootNode += escapeIndex; |
---|
| 724 | curIndex += escapeIndex; |
---|
| 725 | } |
---|
| 726 | } |
---|
| 727 | if (maxIterations < walkIterations) |
---|
| 728 | maxIterations = walkIterations; |
---|
| 729 | |
---|
| 730 | } |
---|
| 731 | |
---|
| 732 | //This traversal can be called from Playstation 3 SPU |
---|
| 733 | void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const |
---|
| 734 | { |
---|
| 735 | btAssert(m_useQuantization); |
---|
| 736 | |
---|
| 737 | int i; |
---|
| 738 | |
---|
| 739 | |
---|
| 740 | for (i=0;i<this->m_SubtreeHeaders.size();i++) |
---|
| 741 | { |
---|
| 742 | const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; |
---|
| 743 | |
---|
| 744 | //PCK: unsigned instead of bool |
---|
| 745 | unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); |
---|
| 746 | if (overlap != 0) |
---|
| 747 | { |
---|
| 748 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, |
---|
| 749 | subtree.m_rootNodeIndex, |
---|
| 750 | subtree.m_rootNodeIndex+subtree.m_subtreeSize); |
---|
| 751 | } |
---|
| 752 | } |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | |
---|
| 756 | void btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const |
---|
| 757 | { |
---|
[2430] | 758 | reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0)); |
---|
[1963] | 759 | } |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const |
---|
| 763 | { |
---|
[2430] | 764 | //always use stackless |
---|
| 765 | |
---|
| 766 | if (m_useQuantization) |
---|
[1963] | 767 | { |
---|
| 768 | walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); |
---|
[2430] | 769 | } |
---|
| 770 | else |
---|
| 771 | { |
---|
| 772 | walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); |
---|
| 773 | } |
---|
| 774 | /* |
---|
| 775 | { |
---|
| 776 | //recursive traversal |
---|
[1963] | 777 | btVector3 qaabbMin = raySource; |
---|
| 778 | btVector3 qaabbMax = raySource; |
---|
| 779 | qaabbMin.setMin(rayTarget); |
---|
| 780 | qaabbMax.setMax(rayTarget); |
---|
| 781 | qaabbMin += aabbMin; |
---|
| 782 | qaabbMax += aabbMax; |
---|
| 783 | reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); |
---|
| 784 | } |
---|
[2430] | 785 | */ |
---|
| 786 | |
---|
[1963] | 787 | } |
---|
| 788 | |
---|
| 789 | |
---|
| 790 | void btQuantizedBvh::swapLeafNodes(int i,int splitIndex) |
---|
| 791 | { |
---|
| 792 | if (m_useQuantization) |
---|
| 793 | { |
---|
| 794 | btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; |
---|
| 795 | m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; |
---|
| 796 | m_quantizedLeafNodes[splitIndex] = tmp; |
---|
| 797 | } else |
---|
| 798 | { |
---|
| 799 | btOptimizedBvhNode tmp = m_leafNodes[i]; |
---|
| 800 | m_leafNodes[i] = m_leafNodes[splitIndex]; |
---|
| 801 | m_leafNodes[splitIndex] = tmp; |
---|
| 802 | } |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) |
---|
| 806 | { |
---|
| 807 | if (m_useQuantization) |
---|
| 808 | { |
---|
| 809 | m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; |
---|
| 810 | } else |
---|
| 811 | { |
---|
| 812 | m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; |
---|
| 813 | } |
---|
| 814 | } |
---|
| 815 | |
---|
| 816 | //PCK: include |
---|
| 817 | #include <new> |
---|
| 818 | |
---|
[2882] | 819 | #if 0 |
---|
[1963] | 820 | //PCK: consts |
---|
| 821 | static const unsigned BVH_ALIGNMENT = 16; |
---|
| 822 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; |
---|
| 823 | |
---|
| 824 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; |
---|
[2882] | 825 | #endif |
---|
[1963] | 826 | |
---|
| 827 | |
---|
| 828 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() |
---|
| 829 | { |
---|
| 830 | // I changed this to 0 since the extra padding is not needed or used. |
---|
| 831 | return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; |
---|
| 832 | } |
---|
| 833 | |
---|
[7983] | 834 | unsigned btQuantizedBvh::calculateSerializeBufferSize() const |
---|
[1963] | 835 | { |
---|
| 836 | unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); |
---|
| 837 | baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
| 838 | if (m_useQuantization) |
---|
| 839 | { |
---|
| 840 | return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); |
---|
| 841 | } |
---|
| 842 | return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); |
---|
| 843 | } |
---|
| 844 | |
---|
[7983] | 845 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const |
---|
[1963] | 846 | { |
---|
[2430] | 847 | btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); |
---|
[1963] | 848 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); |
---|
| 849 | |
---|
| 850 | /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
| 851 | { |
---|
| 852 | ///check alignedment for buffer? |
---|
| 853 | btAssert(0); |
---|
| 854 | return false; |
---|
| 855 | } |
---|
| 856 | */ |
---|
| 857 | |
---|
| 858 | btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; |
---|
| 859 | |
---|
| 860 | // construct the class so the virtual function table, etc will be set up |
---|
| 861 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
| 862 | new (targetBvh) btQuantizedBvh; |
---|
| 863 | |
---|
| 864 | if (i_swapEndian) |
---|
| 865 | { |
---|
| 866 | targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); |
---|
| 870 | btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); |
---|
| 871 | btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); |
---|
| 872 | |
---|
| 873 | targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); |
---|
| 874 | targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); |
---|
| 875 | } |
---|
| 876 | else |
---|
| 877 | { |
---|
| 878 | targetBvh->m_curNodeIndex = m_curNodeIndex; |
---|
| 879 | targetBvh->m_bvhAabbMin = m_bvhAabbMin; |
---|
| 880 | targetBvh->m_bvhAabbMax = m_bvhAabbMax; |
---|
| 881 | targetBvh->m_bvhQuantization = m_bvhQuantization; |
---|
| 882 | targetBvh->m_traversalMode = m_traversalMode; |
---|
| 883 | targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; |
---|
| 884 | } |
---|
| 885 | |
---|
| 886 | targetBvh->m_useQuantization = m_useQuantization; |
---|
| 887 | |
---|
| 888 | unsigned char *nodeData = (unsigned char *)targetBvh; |
---|
| 889 | nodeData += sizeof(btQuantizedBvh); |
---|
| 890 | |
---|
| 891 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
| 892 | nodeData += sizeToAdd; |
---|
| 893 | |
---|
| 894 | int nodeCount = m_curNodeIndex; |
---|
| 895 | |
---|
| 896 | if (m_useQuantization) |
---|
| 897 | { |
---|
| 898 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
| 899 | |
---|
| 900 | if (i_swapEndian) |
---|
| 901 | { |
---|
| 902 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 903 | { |
---|
| 904 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
| 905 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
| 906 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
| 907 | |
---|
| 908 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
| 909 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
| 910 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
| 911 | |
---|
| 912 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
| 913 | } |
---|
| 914 | } |
---|
| 915 | else |
---|
| 916 | { |
---|
| 917 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 918 | { |
---|
| 919 | |
---|
| 920 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; |
---|
| 921 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; |
---|
| 922 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; |
---|
| 923 | |
---|
| 924 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; |
---|
| 925 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; |
---|
| 926 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; |
---|
| 927 | |
---|
| 928 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; |
---|
| 929 | |
---|
| 930 | |
---|
| 931 | } |
---|
| 932 | } |
---|
| 933 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
| 934 | |
---|
| 935 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
| 936 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
| 937 | // so the memory (which is not freed) is left alone |
---|
| 938 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
| 939 | } |
---|
| 940 | else |
---|
| 941 | { |
---|
| 942 | targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
| 943 | |
---|
| 944 | if (i_swapEndian) |
---|
| 945 | { |
---|
| 946 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 947 | { |
---|
| 948 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
| 949 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
| 950 | |
---|
| 951 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
| 952 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); |
---|
| 953 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
| 954 | } |
---|
| 955 | } |
---|
| 956 | else |
---|
| 957 | { |
---|
| 958 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 959 | { |
---|
| 960 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; |
---|
| 961 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; |
---|
| 962 | |
---|
| 963 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; |
---|
| 964 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; |
---|
| 965 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; |
---|
| 966 | } |
---|
| 967 | } |
---|
| 968 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
| 969 | |
---|
| 970 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
| 971 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
| 972 | // so the memory (which is not freed) is left alone |
---|
| 973 | targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
| 977 | nodeData += sizeToAdd; |
---|
| 978 | |
---|
| 979 | // Now serialize the subtree headers |
---|
| 980 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); |
---|
| 981 | if (i_swapEndian) |
---|
| 982 | { |
---|
| 983 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
| 984 | { |
---|
| 985 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
| 986 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
| 987 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
| 988 | |
---|
| 989 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
| 990 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
| 991 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
| 992 | |
---|
| 993 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
| 994 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); |
---|
| 995 | } |
---|
| 996 | } |
---|
| 997 | else |
---|
| 998 | { |
---|
| 999 | for (int i = 0; i < m_subtreeHeaderCount; i++) |
---|
| 1000 | { |
---|
| 1001 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
| 1002 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
| 1003 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
| 1004 | |
---|
| 1005 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
| 1006 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
| 1007 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
| 1008 | |
---|
| 1009 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); |
---|
| 1010 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); |
---|
| 1011 | |
---|
| 1012 | // need to clear padding in destination buffer |
---|
| 1013 | targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; |
---|
| 1014 | targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; |
---|
| 1015 | targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; |
---|
| 1016 | } |
---|
| 1017 | } |
---|
| 1018 | nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; |
---|
| 1019 | |
---|
| 1020 | // this clears the pointer in the member variable it doesn't really do anything to the data |
---|
| 1021 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined |
---|
| 1022 | // so the memory (which is not freed) is left alone |
---|
| 1023 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); |
---|
| 1024 | |
---|
| 1025 | // this wipes the virtual function table pointer at the start of the buffer for the class |
---|
| 1026 | *((void**)o_alignedDataBuffer) = NULL; |
---|
| 1027 | |
---|
| 1028 | return true; |
---|
| 1029 | } |
---|
| 1030 | |
---|
| 1031 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) |
---|
| 1032 | { |
---|
| 1033 | |
---|
| 1034 | if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) |
---|
| 1035 | { |
---|
| 1036 | return NULL; |
---|
| 1037 | } |
---|
| 1038 | btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; |
---|
| 1039 | |
---|
| 1040 | if (i_swapEndian) |
---|
| 1041 | { |
---|
| 1042 | bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); |
---|
| 1043 | |
---|
| 1044 | btUnSwapVector3Endian(bvh->m_bvhAabbMin); |
---|
| 1045 | btUnSwapVector3Endian(bvh->m_bvhAabbMax); |
---|
| 1046 | btUnSwapVector3Endian(bvh->m_bvhQuantization); |
---|
| 1047 | |
---|
| 1048 | bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); |
---|
| 1049 | bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); |
---|
| 1050 | } |
---|
| 1051 | |
---|
| 1052 | unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); |
---|
| 1053 | btAssert(calculatedBufSize <= i_dataBufferSize); |
---|
| 1054 | |
---|
| 1055 | if (calculatedBufSize > i_dataBufferSize) |
---|
| 1056 | { |
---|
| 1057 | return NULL; |
---|
| 1058 | } |
---|
| 1059 | |
---|
| 1060 | unsigned char *nodeData = (unsigned char *)bvh; |
---|
| 1061 | nodeData += sizeof(btQuantizedBvh); |
---|
| 1062 | |
---|
| 1063 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
| 1064 | nodeData += sizeToAdd; |
---|
| 1065 | |
---|
| 1066 | int nodeCount = bvh->m_curNodeIndex; |
---|
| 1067 | |
---|
| 1068 | // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor |
---|
| 1069 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor |
---|
| 1070 | new (bvh) btQuantizedBvh(*bvh, false); |
---|
| 1071 | |
---|
| 1072 | if (bvh->m_useQuantization) |
---|
| 1073 | { |
---|
| 1074 | bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
| 1075 | |
---|
| 1076 | if (i_swapEndian) |
---|
| 1077 | { |
---|
| 1078 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 1079 | { |
---|
| 1080 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); |
---|
| 1081 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); |
---|
| 1082 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); |
---|
| 1083 | |
---|
| 1084 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); |
---|
| 1085 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); |
---|
| 1086 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); |
---|
| 1087 | |
---|
| 1088 | bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); |
---|
| 1089 | } |
---|
| 1090 | } |
---|
| 1091 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; |
---|
| 1092 | } |
---|
| 1093 | else |
---|
| 1094 | { |
---|
| 1095 | bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); |
---|
| 1096 | |
---|
| 1097 | if (i_swapEndian) |
---|
| 1098 | { |
---|
| 1099 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) |
---|
| 1100 | { |
---|
| 1101 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); |
---|
| 1102 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); |
---|
| 1103 | |
---|
| 1104 | bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); |
---|
| 1105 | bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); |
---|
| 1106 | bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); |
---|
| 1107 | } |
---|
| 1108 | } |
---|
| 1109 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; |
---|
| 1110 | } |
---|
| 1111 | |
---|
| 1112 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; |
---|
| 1113 | nodeData += sizeToAdd; |
---|
| 1114 | |
---|
| 1115 | // Now serialize the subtree headers |
---|
| 1116 | bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); |
---|
| 1117 | if (i_swapEndian) |
---|
| 1118 | { |
---|
| 1119 | for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) |
---|
| 1120 | { |
---|
| 1121 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); |
---|
| 1122 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); |
---|
| 1123 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); |
---|
| 1124 | |
---|
| 1125 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); |
---|
| 1126 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); |
---|
| 1127 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); |
---|
| 1128 | |
---|
| 1129 | bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); |
---|
| 1130 | bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); |
---|
| 1131 | } |
---|
| 1132 | } |
---|
| 1133 | |
---|
| 1134 | return bvh; |
---|
| 1135 | } |
---|
| 1136 | |
---|
| 1137 | // Constructor that prevents btVector3's default constructor from being called |
---|
| 1138 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : |
---|
| 1139 | m_bvhAabbMin(self.m_bvhAabbMin), |
---|
| 1140 | m_bvhAabbMax(self.m_bvhAabbMax), |
---|
[2430] | 1141 | m_bvhQuantization(self.m_bvhQuantization), |
---|
| 1142 | m_bulletVersion(BT_BULLET_VERSION) |
---|
[1963] | 1143 | { |
---|
| 1144 | |
---|
| 1145 | } |
---|
| 1146 | |
---|
[7983] | 1147 | void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData) |
---|
| 1148 | { |
---|
| 1149 | m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax); |
---|
| 1150 | m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin); |
---|
| 1151 | m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization); |
---|
[1963] | 1152 | |
---|
[7983] | 1153 | m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex; |
---|
| 1154 | m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0; |
---|
| 1155 | |
---|
| 1156 | { |
---|
| 1157 | int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes; |
---|
| 1158 | m_contiguousNodes.resize(numElem); |
---|
[1963] | 1159 | |
---|
[7983] | 1160 | if (numElem) |
---|
| 1161 | { |
---|
| 1162 | btOptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr; |
---|
[2882] | 1163 | |
---|
[7983] | 1164 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1165 | { |
---|
| 1166 | m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg); |
---|
| 1167 | m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg); |
---|
| 1168 | m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; |
---|
| 1169 | m_contiguousNodes[i].m_subPart = memPtr->m_subPart; |
---|
| 1170 | m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; |
---|
| 1171 | } |
---|
| 1172 | } |
---|
| 1173 | } |
---|
| 1174 | |
---|
| 1175 | { |
---|
| 1176 | int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes; |
---|
| 1177 | m_quantizedContiguousNodes.resize(numElem); |
---|
| 1178 | |
---|
| 1179 | if (numElem) |
---|
| 1180 | { |
---|
| 1181 | btQuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr; |
---|
| 1182 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1183 | { |
---|
| 1184 | m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; |
---|
| 1185 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; |
---|
| 1186 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; |
---|
| 1187 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; |
---|
| 1188 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; |
---|
| 1189 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; |
---|
| 1190 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; |
---|
| 1191 | } |
---|
| 1192 | } |
---|
| 1193 | } |
---|
| 1194 | |
---|
| 1195 | m_traversalMode = btTraversalMode(quantizedBvhFloatData.m_traversalMode); |
---|
| 1196 | |
---|
| 1197 | { |
---|
| 1198 | int numElem = quantizedBvhFloatData.m_numSubtreeHeaders; |
---|
| 1199 | m_SubtreeHeaders.resize(numElem); |
---|
| 1200 | if (numElem) |
---|
| 1201 | { |
---|
| 1202 | btBvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr; |
---|
| 1203 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1204 | { |
---|
| 1205 | m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; |
---|
| 1206 | m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; |
---|
| 1207 | m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; |
---|
| 1208 | m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; |
---|
| 1209 | m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; |
---|
| 1210 | m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; |
---|
| 1211 | m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; |
---|
| 1212 | m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; |
---|
| 1213 | } |
---|
| 1214 | } |
---|
| 1215 | } |
---|
| 1216 | } |
---|
| 1217 | |
---|
| 1218 | void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData) |
---|
| 1219 | { |
---|
| 1220 | m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax); |
---|
| 1221 | m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin); |
---|
| 1222 | m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization); |
---|
| 1223 | |
---|
| 1224 | m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex; |
---|
| 1225 | m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0; |
---|
| 1226 | |
---|
| 1227 | { |
---|
| 1228 | int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes; |
---|
| 1229 | m_contiguousNodes.resize(numElem); |
---|
| 1230 | |
---|
| 1231 | if (numElem) |
---|
| 1232 | { |
---|
| 1233 | btOptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr; |
---|
| 1234 | |
---|
| 1235 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1236 | { |
---|
| 1237 | m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg); |
---|
| 1238 | m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg); |
---|
| 1239 | m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; |
---|
| 1240 | m_contiguousNodes[i].m_subPart = memPtr->m_subPart; |
---|
| 1241 | m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; |
---|
| 1242 | } |
---|
| 1243 | } |
---|
| 1244 | } |
---|
| 1245 | |
---|
| 1246 | { |
---|
| 1247 | int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes; |
---|
| 1248 | m_quantizedContiguousNodes.resize(numElem); |
---|
| 1249 | |
---|
| 1250 | if (numElem) |
---|
| 1251 | { |
---|
| 1252 | btQuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr; |
---|
| 1253 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1254 | { |
---|
| 1255 | m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; |
---|
| 1256 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; |
---|
| 1257 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; |
---|
| 1258 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; |
---|
| 1259 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; |
---|
| 1260 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; |
---|
| 1261 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; |
---|
| 1262 | } |
---|
| 1263 | } |
---|
| 1264 | } |
---|
| 1265 | |
---|
| 1266 | m_traversalMode = btTraversalMode(quantizedBvhDoubleData.m_traversalMode); |
---|
| 1267 | |
---|
| 1268 | { |
---|
| 1269 | int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders; |
---|
| 1270 | m_SubtreeHeaders.resize(numElem); |
---|
| 1271 | if (numElem) |
---|
| 1272 | { |
---|
| 1273 | btBvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr; |
---|
| 1274 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1275 | { |
---|
| 1276 | m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; |
---|
| 1277 | m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; |
---|
| 1278 | m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; |
---|
| 1279 | m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; |
---|
| 1280 | m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; |
---|
| 1281 | m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; |
---|
| 1282 | m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; |
---|
| 1283 | m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; |
---|
| 1284 | } |
---|
| 1285 | } |
---|
| 1286 | } |
---|
| 1287 | |
---|
| 1288 | } |
---|
| 1289 | |
---|
| 1290 | |
---|
| 1291 | |
---|
| 1292 | ///fills the dataBuffer and returns the struct name (and 0 on failure) |
---|
| 1293 | const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const |
---|
| 1294 | { |
---|
| 1295 | btQuantizedBvhData* quantizedData = (btQuantizedBvhData*)dataBuffer; |
---|
| 1296 | |
---|
| 1297 | m_bvhAabbMax.serialize(quantizedData->m_bvhAabbMax); |
---|
| 1298 | m_bvhAabbMin.serialize(quantizedData->m_bvhAabbMin); |
---|
| 1299 | m_bvhQuantization.serialize(quantizedData->m_bvhQuantization); |
---|
| 1300 | |
---|
| 1301 | quantizedData->m_curNodeIndex = m_curNodeIndex; |
---|
| 1302 | quantizedData->m_useQuantization = m_useQuantization; |
---|
| 1303 | |
---|
| 1304 | quantizedData->m_numContiguousLeafNodes = m_contiguousNodes.size(); |
---|
| 1305 | quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*) (m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0); |
---|
| 1306 | if (quantizedData->m_contiguousNodesPtr) |
---|
| 1307 | { |
---|
| 1308 | int sz = sizeof(btOptimizedBvhNodeData); |
---|
| 1309 | int numElem = m_contiguousNodes.size(); |
---|
| 1310 | btChunk* chunk = serializer->allocate(sz,numElem); |
---|
| 1311 | btOptimizedBvhNodeData* memPtr = (btOptimizedBvhNodeData*)chunk->m_oldPtr; |
---|
| 1312 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1313 | { |
---|
| 1314 | m_contiguousNodes[i].m_aabbMaxOrg.serialize(memPtr->m_aabbMaxOrg); |
---|
| 1315 | m_contiguousNodes[i].m_aabbMinOrg.serialize(memPtr->m_aabbMinOrg); |
---|
| 1316 | memPtr->m_escapeIndex = m_contiguousNodes[i].m_escapeIndex; |
---|
| 1317 | memPtr->m_subPart = m_contiguousNodes[i].m_subPart; |
---|
| 1318 | memPtr->m_triangleIndex = m_contiguousNodes[i].m_triangleIndex; |
---|
| 1319 | } |
---|
| 1320 | serializer->finalizeChunk(chunk,"btOptimizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_contiguousNodes[0]); |
---|
| 1321 | } |
---|
| 1322 | |
---|
| 1323 | quantizedData->m_numQuantizedContiguousNodes = m_quantizedContiguousNodes.size(); |
---|
| 1324 | // printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes); |
---|
| 1325 | quantizedData->m_quantizedContiguousNodesPtr =(btQuantizedBvhNodeData*) (m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0); |
---|
| 1326 | if (quantizedData->m_quantizedContiguousNodesPtr) |
---|
| 1327 | { |
---|
| 1328 | int sz = sizeof(btQuantizedBvhNodeData); |
---|
| 1329 | int numElem = m_quantizedContiguousNodes.size(); |
---|
| 1330 | btChunk* chunk = serializer->allocate(sz,numElem); |
---|
| 1331 | btQuantizedBvhNodeData* memPtr = (btQuantizedBvhNodeData*)chunk->m_oldPtr; |
---|
| 1332 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1333 | { |
---|
| 1334 | memPtr->m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex; |
---|
| 1335 | memPtr->m_quantizedAabbMax[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[0]; |
---|
| 1336 | memPtr->m_quantizedAabbMax[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[1]; |
---|
| 1337 | memPtr->m_quantizedAabbMax[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[2]; |
---|
| 1338 | memPtr->m_quantizedAabbMin[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[0]; |
---|
| 1339 | memPtr->m_quantizedAabbMin[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[1]; |
---|
| 1340 | memPtr->m_quantizedAabbMin[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[2]; |
---|
| 1341 | } |
---|
| 1342 | serializer->finalizeChunk(chunk,"btQuantizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_quantizedContiguousNodes[0]); |
---|
| 1343 | } |
---|
| 1344 | |
---|
| 1345 | quantizedData->m_traversalMode = int(m_traversalMode); |
---|
| 1346 | quantizedData->m_numSubtreeHeaders = m_SubtreeHeaders.size(); |
---|
| 1347 | |
---|
| 1348 | quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*) (m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0); |
---|
| 1349 | if (quantizedData->m_subTreeInfoPtr) |
---|
| 1350 | { |
---|
| 1351 | int sz = sizeof(btBvhSubtreeInfoData); |
---|
| 1352 | int numElem = m_SubtreeHeaders.size(); |
---|
| 1353 | btChunk* chunk = serializer->allocate(sz,numElem); |
---|
| 1354 | btBvhSubtreeInfoData* memPtr = (btBvhSubtreeInfoData*)chunk->m_oldPtr; |
---|
| 1355 | for (int i=0;i<numElem;i++,memPtr++) |
---|
| 1356 | { |
---|
| 1357 | memPtr->m_quantizedAabbMax[0] = m_SubtreeHeaders[i].m_quantizedAabbMax[0]; |
---|
| 1358 | memPtr->m_quantizedAabbMax[1] = m_SubtreeHeaders[i].m_quantizedAabbMax[1]; |
---|
| 1359 | memPtr->m_quantizedAabbMax[2] = m_SubtreeHeaders[i].m_quantizedAabbMax[2]; |
---|
| 1360 | memPtr->m_quantizedAabbMin[0] = m_SubtreeHeaders[i].m_quantizedAabbMin[0]; |
---|
| 1361 | memPtr->m_quantizedAabbMin[1] = m_SubtreeHeaders[i].m_quantizedAabbMin[1]; |
---|
| 1362 | memPtr->m_quantizedAabbMin[2] = m_SubtreeHeaders[i].m_quantizedAabbMin[2]; |
---|
| 1363 | |
---|
| 1364 | memPtr->m_rootNodeIndex = m_SubtreeHeaders[i].m_rootNodeIndex; |
---|
| 1365 | memPtr->m_subtreeSize = m_SubtreeHeaders[i].m_subtreeSize; |
---|
| 1366 | } |
---|
| 1367 | serializer->finalizeChunk(chunk,"btBvhSubtreeInfoData",BT_ARRAY_CODE,(void*)&m_SubtreeHeaders[0]); |
---|
| 1368 | } |
---|
| 1369 | return btQuantizedBvhDataName; |
---|
| 1370 | } |
---|
| 1371 | |
---|
| 1372 | |
---|
| 1373 | |
---|
| 1374 | |
---|
| 1375 | |
---|