[1963] | 1 | /* |
---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
---|
| 3 | btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios |
---|
| 4 | |
---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
---|
| 9 | subject to the following restrictions: |
---|
| 10 | |
---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
---|
| 14 | |
---|
| 15 | Written by: Marcus Hennix |
---|
| 16 | */ |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | #include "btConeTwistConstraint.h" |
---|
| 20 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
---|
| 21 | #include "LinearMath/btTransformUtil.h" |
---|
| 22 | #include "LinearMath/btMinMax.h" |
---|
| 23 | #include <new> |
---|
| 24 | |
---|
[2882] | 25 | //----------------------------------------------------------------------------- |
---|
| 26 | |
---|
| 27 | #define CONETWIST_USE_OBSOLETE_SOLVER false |
---|
| 28 | #define CONETWIST_DEF_FIX_THRESH btScalar(.05f) |
---|
| 29 | |
---|
| 30 | //----------------------------------------------------------------------------- |
---|
| 31 | |
---|
[1963] | 32 | btConeTwistConstraint::btConeTwistConstraint() |
---|
[2882] | 33 | :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE), |
---|
| 34 | m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER) |
---|
[1963] | 35 | { |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB, |
---|
| 40 | const btTransform& rbAFrame,const btTransform& rbBFrame) |
---|
| 41 | :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
---|
[2882] | 42 | m_angularOnly(false), |
---|
| 43 | m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER) |
---|
[1963] | 44 | { |
---|
[2882] | 45 | init(); |
---|
[1963] | 46 | } |
---|
| 47 | |
---|
| 48 | btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame) |
---|
| 49 | :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame), |
---|
[2882] | 50 | m_angularOnly(false), |
---|
| 51 | m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER) |
---|
[1963] | 52 | { |
---|
| 53 | m_rbBFrame = m_rbAFrame; |
---|
[2882] | 54 | init(); |
---|
| 55 | } |
---|
[1963] | 56 | |
---|
| 57 | |
---|
[2882] | 58 | void btConeTwistConstraint::init() |
---|
[1963] | 59 | { |
---|
[2882] | 60 | m_angularOnly = false; |
---|
[1963] | 61 | m_solveTwistLimit = false; |
---|
| 62 | m_solveSwingLimit = false; |
---|
[2882] | 63 | m_bMotorEnabled = false; |
---|
| 64 | m_maxMotorImpulse = btScalar(-1); |
---|
[1963] | 65 | |
---|
[2882] | 66 | setLimit(btScalar(1e30), btScalar(1e30), btScalar(1e30)); |
---|
| 67 | m_damping = btScalar(0.01); |
---|
| 68 | m_fixThresh = CONETWIST_DEF_FIX_THRESH; |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | //----------------------------------------------------------------------------- |
---|
| 73 | |
---|
| 74 | void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info) |
---|
| 75 | { |
---|
| 76 | if (m_useSolveConstraintObsolete) |
---|
[1963] | 77 | { |
---|
[2882] | 78 | info->m_numConstraintRows = 0; |
---|
| 79 | info->nub = 0; |
---|
| 80 | } |
---|
| 81 | else |
---|
| 82 | { |
---|
| 83 | info->m_numConstraintRows = 3; |
---|
| 84 | info->nub = 3; |
---|
| 85 | calcAngleInfo2(); |
---|
| 86 | if(m_solveSwingLimit) |
---|
| 87 | { |
---|
| 88 | info->m_numConstraintRows++; |
---|
| 89 | info->nub--; |
---|
| 90 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) |
---|
| 91 | { |
---|
| 92 | info->m_numConstraintRows++; |
---|
| 93 | info->nub--; |
---|
| 94 | } |
---|
| 95 | } |
---|
| 96 | if(m_solveTwistLimit) |
---|
| 97 | { |
---|
| 98 | info->m_numConstraintRows++; |
---|
| 99 | info->nub--; |
---|
| 100 | } |
---|
| 101 | } |
---|
| 102 | } // btConeTwistConstraint::getInfo1() |
---|
| 103 | |
---|
| 104 | //----------------------------------------------------------------------------- |
---|
[1963] | 105 | |
---|
[2882] | 106 | void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info) |
---|
| 107 | { |
---|
| 108 | btAssert(!m_useSolveConstraintObsolete); |
---|
| 109 | //retrieve matrices |
---|
| 110 | btTransform body0_trans; |
---|
| 111 | body0_trans = m_rbA.getCenterOfMassTransform(); |
---|
| 112 | btTransform body1_trans; |
---|
| 113 | body1_trans = m_rbB.getCenterOfMassTransform(); |
---|
| 114 | // set jacobian |
---|
| 115 | info->m_J1linearAxis[0] = 1; |
---|
| 116 | info->m_J1linearAxis[info->rowskip+1] = 1; |
---|
| 117 | info->m_J1linearAxis[2*info->rowskip+2] = 1; |
---|
| 118 | btVector3 a1 = body0_trans.getBasis() * m_rbAFrame.getOrigin(); |
---|
| 119 | { |
---|
| 120 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); |
---|
| 121 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip); |
---|
| 122 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip); |
---|
| 123 | btVector3 a1neg = -a1; |
---|
| 124 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
| 125 | } |
---|
| 126 | btVector3 a2 = body1_trans.getBasis() * m_rbBFrame.getOrigin(); |
---|
| 127 | { |
---|
| 128 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); |
---|
| 129 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip); |
---|
| 130 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip); |
---|
| 131 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); |
---|
| 132 | } |
---|
| 133 | // set right hand side |
---|
| 134 | btScalar k = info->fps * info->erp; |
---|
| 135 | int j; |
---|
| 136 | for (j=0; j<3; j++) |
---|
| 137 | { |
---|
| 138 | info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]); |
---|
| 139 | info->m_lowerLimit[j*info->rowskip] = -SIMD_INFINITY; |
---|
| 140 | info->m_upperLimit[j*info->rowskip] = SIMD_INFINITY; |
---|
| 141 | } |
---|
| 142 | int row = 3; |
---|
| 143 | int srow = row * info->rowskip; |
---|
| 144 | btVector3 ax1; |
---|
| 145 | // angular limits |
---|
| 146 | if(m_solveSwingLimit) |
---|
| 147 | { |
---|
| 148 | btScalar *J1 = info->m_J1angularAxis; |
---|
| 149 | btScalar *J2 = info->m_J2angularAxis; |
---|
| 150 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) |
---|
[1963] | 151 | { |
---|
[2882] | 152 | btTransform trA = m_rbA.getCenterOfMassTransform()*m_rbAFrame; |
---|
| 153 | btVector3 p = trA.getBasis().getColumn(1); |
---|
| 154 | btVector3 q = trA.getBasis().getColumn(2); |
---|
| 155 | int srow1 = srow + info->rowskip; |
---|
| 156 | J1[srow+0] = p[0]; |
---|
| 157 | J1[srow+1] = p[1]; |
---|
| 158 | J1[srow+2] = p[2]; |
---|
| 159 | J1[srow1+0] = q[0]; |
---|
| 160 | J1[srow1+1] = q[1]; |
---|
| 161 | J1[srow1+2] = q[2]; |
---|
| 162 | J2[srow+0] = -p[0]; |
---|
| 163 | J2[srow+1] = -p[1]; |
---|
| 164 | J2[srow+2] = -p[2]; |
---|
| 165 | J2[srow1+0] = -q[0]; |
---|
| 166 | J2[srow1+1] = -q[1]; |
---|
| 167 | J2[srow1+2] = -q[2]; |
---|
| 168 | btScalar fact = info->fps * m_relaxationFactor; |
---|
| 169 | info->m_constraintError[srow] = fact * m_swingAxis.dot(p); |
---|
| 170 | info->m_constraintError[srow1] = fact * m_swingAxis.dot(q); |
---|
| 171 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 172 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 173 | info->m_lowerLimit[srow1] = -SIMD_INFINITY; |
---|
| 174 | info->m_upperLimit[srow1] = SIMD_INFINITY; |
---|
| 175 | srow = srow1 + info->rowskip; |
---|
[1963] | 176 | } |
---|
| 177 | else |
---|
| 178 | { |
---|
[2882] | 179 | ax1 = m_swingAxis * m_relaxationFactor * m_relaxationFactor; |
---|
| 180 | J1[srow+0] = ax1[0]; |
---|
| 181 | J1[srow+1] = ax1[1]; |
---|
| 182 | J1[srow+2] = ax1[2]; |
---|
| 183 | J2[srow+0] = -ax1[0]; |
---|
| 184 | J2[srow+1] = -ax1[1]; |
---|
| 185 | J2[srow+2] = -ax1[2]; |
---|
| 186 | btScalar k = info->fps * m_biasFactor; |
---|
| 187 | |
---|
| 188 | info->m_constraintError[srow] = k * m_swingCorrection; |
---|
| 189 | info->cfm[srow] = 0.0f; |
---|
| 190 | // m_swingCorrection is always positive or 0 |
---|
| 191 | info->m_lowerLimit[srow] = 0; |
---|
| 192 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 193 | srow += info->rowskip; |
---|
[1963] | 194 | } |
---|
[2882] | 195 | } |
---|
| 196 | if(m_solveTwistLimit) |
---|
| 197 | { |
---|
| 198 | ax1 = m_twistAxis * m_relaxationFactor * m_relaxationFactor; |
---|
| 199 | btScalar *J1 = info->m_J1angularAxis; |
---|
| 200 | btScalar *J2 = info->m_J2angularAxis; |
---|
| 201 | J1[srow+0] = ax1[0]; |
---|
| 202 | J1[srow+1] = ax1[1]; |
---|
| 203 | J1[srow+2] = ax1[2]; |
---|
| 204 | J2[srow+0] = -ax1[0]; |
---|
| 205 | J2[srow+1] = -ax1[1]; |
---|
| 206 | J2[srow+2] = -ax1[2]; |
---|
| 207 | btScalar k = info->fps * m_biasFactor; |
---|
| 208 | info->m_constraintError[srow] = k * m_twistCorrection; |
---|
| 209 | info->cfm[srow] = 0.0f; |
---|
| 210 | if(m_twistSpan > 0.0f) |
---|
| 211 | { |
---|
[1963] | 212 | |
---|
[2882] | 213 | if(m_twistCorrection > 0.0f) |
---|
| 214 | { |
---|
| 215 | info->m_lowerLimit[srow] = 0; |
---|
| 216 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 217 | } |
---|
| 218 | else |
---|
| 219 | { |
---|
| 220 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 221 | info->m_upperLimit[srow] = 0; |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | else |
---|
| 225 | { |
---|
| 226 | info->m_lowerLimit[srow] = -SIMD_INFINITY; |
---|
| 227 | info->m_upperLimit[srow] = SIMD_INFINITY; |
---|
| 228 | } |
---|
| 229 | srow += info->rowskip; |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | //----------------------------------------------------------------------------- |
---|
[1963] | 234 | |
---|
[2882] | 235 | void btConeTwistConstraint::buildJacobian() |
---|
| 236 | { |
---|
| 237 | if (m_useSolveConstraintObsolete) |
---|
| 238 | { |
---|
| 239 | m_appliedImpulse = btScalar(0.); |
---|
| 240 | m_accTwistLimitImpulse = btScalar(0.); |
---|
| 241 | m_accSwingLimitImpulse = btScalar(0.); |
---|
| 242 | |
---|
| 243 | if (!m_angularOnly) |
---|
[1963] | 244 | { |
---|
[2882] | 245 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
| 246 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
| 247 | btVector3 relPos = pivotBInW - pivotAInW; |
---|
| 248 | |
---|
| 249 | btVector3 normal[3]; |
---|
| 250 | if (relPos.length2() > SIMD_EPSILON) |
---|
| 251 | { |
---|
| 252 | normal[0] = relPos.normalized(); |
---|
| 253 | } |
---|
| 254 | else |
---|
| 255 | { |
---|
| 256 | normal[0].setValue(btScalar(1.0),0,0); |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
---|
| 260 | |
---|
| 261 | for (int i=0;i<3;i++) |
---|
| 262 | { |
---|
| 263 | new (&m_jac[i]) btJacobianEntry( |
---|
[1963] | 264 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 265 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
---|
| 266 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
---|
| 267 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
---|
| 268 | normal[i], |
---|
| 269 | m_rbA.getInvInertiaDiagLocal(), |
---|
| 270 | m_rbA.getInvMass(), |
---|
| 271 | m_rbB.getInvInertiaDiagLocal(), |
---|
| 272 | m_rbB.getInvMass()); |
---|
[2882] | 273 | } |
---|
[1963] | 274 | } |
---|
[2882] | 275 | |
---|
| 276 | calcAngleInfo2(); |
---|
[1963] | 277 | } |
---|
[2882] | 278 | } |
---|
[1963] | 279 | |
---|
[2882] | 280 | //----------------------------------------------------------------------------- |
---|
| 281 | |
---|
| 282 | void btConeTwistConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep) |
---|
| 283 | { |
---|
| 284 | if (m_useSolveConstraintObsolete) |
---|
| 285 | { |
---|
| 286 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
---|
| 287 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
---|
| 288 | |
---|
| 289 | btScalar tau = btScalar(0.3); |
---|
| 290 | |
---|
| 291 | //linear part |
---|
| 292 | if (!m_angularOnly) |
---|
| 293 | { |
---|
| 294 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
---|
| 295 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
---|
| 296 | |
---|
| 297 | btVector3 vel1; |
---|
| 298 | bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); |
---|
| 299 | btVector3 vel2; |
---|
| 300 | bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); |
---|
| 301 | btVector3 vel = vel1 - vel2; |
---|
| 302 | |
---|
| 303 | for (int i=0;i<3;i++) |
---|
| 304 | { |
---|
| 305 | const btVector3& normal = m_jac[i].m_linearJointAxis; |
---|
| 306 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); |
---|
| 307 | |
---|
| 308 | btScalar rel_vel; |
---|
| 309 | rel_vel = normal.dot(vel); |
---|
| 310 | //positional error (zeroth order error) |
---|
| 311 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
---|
| 312 | btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; |
---|
| 313 | m_appliedImpulse += impulse; |
---|
| 314 | |
---|
| 315 | btVector3 ftorqueAxis1 = rel_pos1.cross(normal); |
---|
| 316 | btVector3 ftorqueAxis2 = rel_pos2.cross(normal); |
---|
| 317 | bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse); |
---|
| 318 | bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse); |
---|
| 319 | |
---|
| 320 | } |
---|
| 321 | } |
---|
| 322 | |
---|
| 323 | // apply motor |
---|
| 324 | if (m_bMotorEnabled) |
---|
| 325 | { |
---|
| 326 | // compute current and predicted transforms |
---|
| 327 | btTransform trACur = m_rbA.getCenterOfMassTransform(); |
---|
| 328 | btTransform trBCur = m_rbB.getCenterOfMassTransform(); |
---|
| 329 | btVector3 omegaA; bodyA.getAngularVelocity(omegaA); |
---|
| 330 | btVector3 omegaB; bodyB.getAngularVelocity(omegaB); |
---|
| 331 | btTransform trAPred; trAPred.setIdentity(); |
---|
| 332 | btVector3 zerovec(0,0,0); |
---|
| 333 | btTransformUtil::integrateTransform( |
---|
| 334 | trACur, zerovec, omegaA, timeStep, trAPred); |
---|
| 335 | btTransform trBPred; trBPred.setIdentity(); |
---|
| 336 | btTransformUtil::integrateTransform( |
---|
| 337 | trBCur, zerovec, omegaB, timeStep, trBPred); |
---|
| 338 | |
---|
| 339 | // compute desired transforms in world |
---|
| 340 | btTransform trPose(m_qTarget); |
---|
| 341 | btTransform trABDes = m_rbBFrame * trPose * m_rbAFrame.inverse(); |
---|
| 342 | btTransform trADes = trBPred * trABDes; |
---|
| 343 | btTransform trBDes = trAPred * trABDes.inverse(); |
---|
| 344 | |
---|
| 345 | // compute desired omegas in world |
---|
| 346 | btVector3 omegaADes, omegaBDes; |
---|
| 347 | |
---|
| 348 | btTransformUtil::calculateVelocity(trACur, trADes, timeStep, zerovec, omegaADes); |
---|
| 349 | btTransformUtil::calculateVelocity(trBCur, trBDes, timeStep, zerovec, omegaBDes); |
---|
| 350 | |
---|
| 351 | // compute delta omegas |
---|
| 352 | btVector3 dOmegaA = omegaADes - omegaA; |
---|
| 353 | btVector3 dOmegaB = omegaBDes - omegaB; |
---|
| 354 | |
---|
| 355 | // compute weighted avg axis of dOmega (weighting based on inertias) |
---|
| 356 | btVector3 axisA, axisB; |
---|
| 357 | btScalar kAxisAInv = 0, kAxisBInv = 0; |
---|
| 358 | |
---|
| 359 | if (dOmegaA.length2() > SIMD_EPSILON) |
---|
| 360 | { |
---|
| 361 | axisA = dOmegaA.normalized(); |
---|
| 362 | kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(axisA); |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | if (dOmegaB.length2() > SIMD_EPSILON) |
---|
| 366 | { |
---|
| 367 | axisB = dOmegaB.normalized(); |
---|
| 368 | kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(axisB); |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB; |
---|
| 372 | |
---|
| 373 | static bool bDoTorque = true; |
---|
| 374 | if (bDoTorque && avgAxis.length2() > SIMD_EPSILON) |
---|
| 375 | { |
---|
| 376 | avgAxis.normalize(); |
---|
| 377 | kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(avgAxis); |
---|
| 378 | kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(avgAxis); |
---|
| 379 | btScalar kInvCombined = kAxisAInv + kAxisBInv; |
---|
| 380 | |
---|
| 381 | btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) / |
---|
| 382 | (kInvCombined * kInvCombined); |
---|
| 383 | |
---|
| 384 | if (m_maxMotorImpulse >= 0) |
---|
| 385 | { |
---|
| 386 | btScalar fMaxImpulse = m_maxMotorImpulse; |
---|
| 387 | if (m_bNormalizedMotorStrength) |
---|
| 388 | fMaxImpulse = fMaxImpulse/kAxisAInv; |
---|
| 389 | |
---|
| 390 | btVector3 newUnclampedAccImpulse = m_accMotorImpulse + impulse; |
---|
| 391 | btScalar newUnclampedMag = newUnclampedAccImpulse.length(); |
---|
| 392 | if (newUnclampedMag > fMaxImpulse) |
---|
| 393 | { |
---|
| 394 | newUnclampedAccImpulse.normalize(); |
---|
| 395 | newUnclampedAccImpulse *= fMaxImpulse; |
---|
| 396 | impulse = newUnclampedAccImpulse - m_accMotorImpulse; |
---|
| 397 | } |
---|
| 398 | m_accMotorImpulse += impulse; |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | btScalar impulseMag = impulse.length(); |
---|
| 402 | btVector3 impulseAxis = impulse / impulseMag; |
---|
| 403 | |
---|
| 404 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag); |
---|
| 405 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag); |
---|
| 406 | |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | else // no motor: do a little damping |
---|
| 410 | { |
---|
| 411 | const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); |
---|
| 412 | const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); |
---|
| 413 | btVector3 relVel = angVelB - angVelA; |
---|
| 414 | if (relVel.length2() > SIMD_EPSILON) |
---|
| 415 | { |
---|
| 416 | btVector3 relVelAxis = relVel.normalized(); |
---|
| 417 | btScalar m_kDamping = btScalar(1.) / |
---|
| 418 | (getRigidBodyA().computeAngularImpulseDenominator(relVelAxis) + |
---|
| 419 | getRigidBodyB().computeAngularImpulseDenominator(relVelAxis)); |
---|
| 420 | btVector3 impulse = m_damping * m_kDamping * relVel; |
---|
| 421 | |
---|
| 422 | btScalar impulseMag = impulse.length(); |
---|
| 423 | btVector3 impulseAxis = impulse / impulseMag; |
---|
| 424 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag); |
---|
| 425 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag); |
---|
| 426 | } |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | // joint limits |
---|
| 430 | { |
---|
| 431 | ///solve angular part |
---|
| 432 | btVector3 angVelA; |
---|
| 433 | bodyA.getAngularVelocity(angVelA); |
---|
| 434 | btVector3 angVelB; |
---|
| 435 | bodyB.getAngularVelocity(angVelB); |
---|
| 436 | |
---|
| 437 | // solve swing limit |
---|
| 438 | if (m_solveSwingLimit) |
---|
| 439 | { |
---|
| 440 | btScalar amplitude = m_swingLimitRatio * m_swingCorrection*m_biasFactor/timeStep; |
---|
| 441 | btScalar relSwingVel = (angVelB - angVelA).dot(m_swingAxis); |
---|
| 442 | if (relSwingVel > 0) |
---|
| 443 | amplitude += m_swingLimitRatio * relSwingVel * m_relaxationFactor; |
---|
| 444 | btScalar impulseMag = amplitude * m_kSwing; |
---|
| 445 | |
---|
| 446 | // Clamp the accumulated impulse |
---|
| 447 | btScalar temp = m_accSwingLimitImpulse; |
---|
| 448 | m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) ); |
---|
| 449 | impulseMag = m_accSwingLimitImpulse - temp; |
---|
| 450 | |
---|
| 451 | btVector3 impulse = m_swingAxis * impulseMag; |
---|
| 452 | |
---|
| 453 | // don't let cone response affect twist |
---|
| 454 | // (this can happen since body A's twist doesn't match body B's AND we use an elliptical cone limit) |
---|
| 455 | { |
---|
| 456 | btVector3 impulseTwistCouple = impulse.dot(m_twistAxisA) * m_twistAxisA; |
---|
| 457 | btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple; |
---|
| 458 | impulse = impulseNoTwistCouple; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | impulseMag = impulse.length(); |
---|
| 462 | btVector3 noTwistSwingAxis = impulse / impulseMag; |
---|
| 463 | |
---|
| 464 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*noTwistSwingAxis, impulseMag); |
---|
| 465 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*noTwistSwingAxis, -impulseMag); |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | |
---|
| 469 | // solve twist limit |
---|
| 470 | if (m_solveTwistLimit) |
---|
| 471 | { |
---|
| 472 | btScalar amplitude = m_twistLimitRatio * m_twistCorrection*m_biasFactor/timeStep; |
---|
| 473 | btScalar relTwistVel = (angVelB - angVelA).dot( m_twistAxis ); |
---|
| 474 | if (relTwistVel > 0) // only damp when moving towards limit (m_twistAxis flipping is important) |
---|
| 475 | amplitude += m_twistLimitRatio * relTwistVel * m_relaxationFactor; |
---|
| 476 | btScalar impulseMag = amplitude * m_kTwist; |
---|
| 477 | |
---|
| 478 | // Clamp the accumulated impulse |
---|
| 479 | btScalar temp = m_accTwistLimitImpulse; |
---|
| 480 | m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) ); |
---|
| 481 | impulseMag = m_accTwistLimitImpulse - temp; |
---|
| 482 | |
---|
| 483 | btVector3 impulse = m_twistAxis * impulseMag; |
---|
| 484 | |
---|
| 485 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag); |
---|
| 486 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag); |
---|
| 487 | } |
---|
| 488 | } |
---|
| 489 | } |
---|
| 490 | |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | //----------------------------------------------------------------------------- |
---|
| 494 | |
---|
| 495 | void btConeTwistConstraint::updateRHS(btScalar timeStep) |
---|
| 496 | { |
---|
| 497 | (void)timeStep; |
---|
| 498 | |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | //----------------------------------------------------------------------------- |
---|
| 502 | |
---|
| 503 | void btConeTwistConstraint::calcAngleInfo() |
---|
| 504 | { |
---|
| 505 | m_swingCorrection = btScalar(0.); |
---|
| 506 | m_twistLimitSign = btScalar(0.); |
---|
| 507 | m_solveTwistLimit = false; |
---|
| 508 | m_solveSwingLimit = false; |
---|
| 509 | |
---|
[1963] | 510 | btVector3 b1Axis1,b1Axis2,b1Axis3; |
---|
| 511 | btVector3 b2Axis1,b2Axis2; |
---|
| 512 | |
---|
| 513 | b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0); |
---|
| 514 | b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0); |
---|
| 515 | |
---|
| 516 | btScalar swing1=btScalar(0.),swing2 = btScalar(0.); |
---|
| 517 | |
---|
| 518 | btScalar swx=btScalar(0.),swy = btScalar(0.); |
---|
| 519 | btScalar thresh = btScalar(10.); |
---|
| 520 | btScalar fact; |
---|
| 521 | |
---|
| 522 | // Get Frame into world space |
---|
| 523 | if (m_swingSpan1 >= btScalar(0.05f)) |
---|
| 524 | { |
---|
| 525 | b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1); |
---|
| 526 | swx = b2Axis1.dot(b1Axis1); |
---|
| 527 | swy = b2Axis1.dot(b1Axis2); |
---|
| 528 | swing1 = btAtan2Fast(swy, swx); |
---|
| 529 | fact = (swy*swy + swx*swx) * thresh * thresh; |
---|
| 530 | fact = fact / (fact + btScalar(1.0)); |
---|
| 531 | swing1 *= fact; |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | if (m_swingSpan2 >= btScalar(0.05f)) |
---|
| 535 | { |
---|
| 536 | b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2); |
---|
| 537 | swx = b2Axis1.dot(b1Axis1); |
---|
| 538 | swy = b2Axis1.dot(b1Axis3); |
---|
| 539 | swing2 = btAtan2Fast(swy, swx); |
---|
| 540 | fact = (swy*swy + swx*swx) * thresh * thresh; |
---|
| 541 | fact = fact / (fact + btScalar(1.0)); |
---|
| 542 | swing2 *= fact; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1); |
---|
| 546 | btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2); |
---|
| 547 | btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq; |
---|
| 548 | |
---|
| 549 | if (EllipseAngle > 1.0f) |
---|
| 550 | { |
---|
| 551 | m_swingCorrection = EllipseAngle-1.0f; |
---|
| 552 | m_solveSwingLimit = true; |
---|
| 553 | // Calculate necessary axis & factors |
---|
| 554 | m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3)); |
---|
| 555 | m_swingAxis.normalize(); |
---|
| 556 | btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f; |
---|
| 557 | m_swingAxis *= swingAxisSign; |
---|
| 558 | } |
---|
| 559 | |
---|
| 560 | // Twist limits |
---|
| 561 | if (m_twistSpan >= btScalar(0.)) |
---|
| 562 | { |
---|
| 563 | btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1); |
---|
| 564 | btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1); |
---|
| 565 | btVector3 TwistRef = quatRotate(rotationArc,b2Axis2); |
---|
| 566 | btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) ); |
---|
[2882] | 567 | m_twistAngle = twist; |
---|
[1963] | 568 | |
---|
[2882] | 569 | // btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.); |
---|
| 570 | btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? btScalar(1.0f) : btScalar(0.); |
---|
[1963] | 571 | if (twist <= -m_twistSpan*lockedFreeFactor) |
---|
| 572 | { |
---|
| 573 | m_twistCorrection = -(twist + m_twistSpan); |
---|
| 574 | m_solveTwistLimit = true; |
---|
| 575 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; |
---|
| 576 | m_twistAxis.normalize(); |
---|
| 577 | m_twistAxis *= -1.0f; |
---|
[2882] | 578 | } |
---|
| 579 | else if (twist > m_twistSpan*lockedFreeFactor) |
---|
| 580 | { |
---|
| 581 | m_twistCorrection = (twist - m_twistSpan); |
---|
| 582 | m_solveTwistLimit = true; |
---|
| 583 | m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; |
---|
| 584 | m_twistAxis.normalize(); |
---|
| 585 | } |
---|
| 586 | } |
---|
| 587 | } // btConeTwistConstraint::calcAngleInfo() |
---|
[1963] | 588 | |
---|
| 589 | |
---|
[2882] | 590 | static btVector3 vTwist(1,0,0); // twist axis in constraint's space |
---|
| 591 | |
---|
| 592 | //----------------------------------------------------------------------------- |
---|
| 593 | |
---|
| 594 | void btConeTwistConstraint::calcAngleInfo2() |
---|
| 595 | { |
---|
| 596 | m_swingCorrection = btScalar(0.); |
---|
| 597 | m_twistLimitSign = btScalar(0.); |
---|
| 598 | m_solveTwistLimit = false; |
---|
| 599 | m_solveSwingLimit = false; |
---|
| 600 | |
---|
| 601 | { |
---|
| 602 | // compute rotation of A wrt B (in constraint space) |
---|
| 603 | btQuaternion qA = getRigidBodyA().getCenterOfMassTransform().getRotation() * m_rbAFrame.getRotation(); |
---|
| 604 | btQuaternion qB = getRigidBodyB().getCenterOfMassTransform().getRotation() * m_rbBFrame.getRotation(); |
---|
| 605 | btQuaternion qAB = qB.inverse() * qA; |
---|
| 606 | |
---|
| 607 | // split rotation into cone and twist |
---|
| 608 | // (all this is done from B's perspective. Maybe I should be averaging axes...) |
---|
| 609 | btVector3 vConeNoTwist = quatRotate(qAB, vTwist); vConeNoTwist.normalize(); |
---|
| 610 | btQuaternion qABCone = shortestArcQuat(vTwist, vConeNoTwist); qABCone.normalize(); |
---|
| 611 | btQuaternion qABTwist = qABCone.inverse() * qAB; qABTwist.normalize(); |
---|
| 612 | |
---|
| 613 | if (m_swingSpan1 >= m_fixThresh && m_swingSpan2 >= m_fixThresh) |
---|
| 614 | { |
---|
| 615 | btScalar swingAngle, swingLimit = 0; btVector3 swingAxis; |
---|
| 616 | computeConeLimitInfo(qABCone, swingAngle, swingAxis, swingLimit); |
---|
| 617 | |
---|
| 618 | if (swingAngle > swingLimit * m_limitSoftness) |
---|
[1963] | 619 | { |
---|
[2882] | 620 | m_solveSwingLimit = true; |
---|
[1963] | 621 | |
---|
[2882] | 622 | // compute limit ratio: 0->1, where |
---|
| 623 | // 0 == beginning of soft limit |
---|
| 624 | // 1 == hard/real limit |
---|
| 625 | m_swingLimitRatio = 1.f; |
---|
| 626 | if (swingAngle < swingLimit && m_limitSoftness < 1.f - SIMD_EPSILON) |
---|
| 627 | { |
---|
| 628 | m_swingLimitRatio = (swingAngle - swingLimit * m_limitSoftness)/ |
---|
| 629 | (swingLimit - swingLimit * m_limitSoftness); |
---|
| 630 | } |
---|
[1963] | 631 | |
---|
[2882] | 632 | // swing correction tries to get back to soft limit |
---|
| 633 | m_swingCorrection = swingAngle - (swingLimit * m_limitSoftness); |
---|
[1963] | 634 | |
---|
[2882] | 635 | // adjustment of swing axis (based on ellipse normal) |
---|
| 636 | adjustSwingAxisToUseEllipseNormal(swingAxis); |
---|
| 637 | |
---|
| 638 | // Calculate necessary axis & factors |
---|
| 639 | m_swingAxis = quatRotate(qB, -swingAxis); |
---|
| 640 | |
---|
| 641 | m_twistAxisA.setValue(0,0,0); |
---|
| 642 | |
---|
| 643 | m_kSwing = btScalar(1.) / |
---|
| 644 | (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) + |
---|
| 645 | getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis)); |
---|
[1963] | 646 | } |
---|
[2882] | 647 | } |
---|
| 648 | else |
---|
| 649 | { |
---|
| 650 | // you haven't set any limits; |
---|
| 651 | // or you're trying to set at least one of the swing limits too small. (if so, do you really want a conetwist constraint?) |
---|
| 652 | // anyway, we have either hinge or fixed joint |
---|
| 653 | btVector3 ivA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); |
---|
| 654 | btVector3 jvA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); |
---|
| 655 | btVector3 kvA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
---|
| 656 | btVector3 ivB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(0); |
---|
| 657 | btVector3 target; |
---|
| 658 | btScalar x = ivB.dot(ivA); |
---|
| 659 | btScalar y = ivB.dot(jvA); |
---|
| 660 | btScalar z = ivB.dot(kvA); |
---|
| 661 | if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh)) |
---|
| 662 | { // fixed. We'll need to add one more row to constraint |
---|
| 663 | if((!btFuzzyZero(y)) || (!(btFuzzyZero(z)))) |
---|
| 664 | { |
---|
| 665 | m_solveSwingLimit = true; |
---|
| 666 | m_swingAxis = -ivB.cross(ivA); |
---|
| 667 | } |
---|
| 668 | } |
---|
| 669 | else |
---|
| 670 | { |
---|
| 671 | if(m_swingSpan1 < m_fixThresh) |
---|
| 672 | { // hinge around Y axis |
---|
| 673 | if(!(btFuzzyZero(y))) |
---|
| 674 | { |
---|
| 675 | m_solveSwingLimit = true; |
---|
| 676 | if(m_swingSpan2 >= m_fixThresh) |
---|
| 677 | { |
---|
| 678 | y = btScalar(0.f); |
---|
| 679 | btScalar span2 = btAtan2(z, x); |
---|
| 680 | if(span2 > m_swingSpan2) |
---|
| 681 | { |
---|
| 682 | x = btCos(m_swingSpan2); |
---|
| 683 | z = btSin(m_swingSpan2); |
---|
| 684 | } |
---|
| 685 | else if(span2 < -m_swingSpan2) |
---|
| 686 | { |
---|
| 687 | x = btCos(m_swingSpan2); |
---|
| 688 | z = -btSin(m_swingSpan2); |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | } |
---|
| 692 | } |
---|
| 693 | else |
---|
| 694 | { // hinge around Z axis |
---|
| 695 | if(!btFuzzyZero(z)) |
---|
| 696 | { |
---|
| 697 | m_solveSwingLimit = true; |
---|
| 698 | if(m_swingSpan1 >= m_fixThresh) |
---|
| 699 | { |
---|
| 700 | z = btScalar(0.f); |
---|
| 701 | btScalar span1 = btAtan2(y, x); |
---|
| 702 | if(span1 > m_swingSpan1) |
---|
| 703 | { |
---|
| 704 | x = btCos(m_swingSpan1); |
---|
| 705 | y = btSin(m_swingSpan1); |
---|
| 706 | } |
---|
| 707 | else if(span1 < -m_swingSpan1) |
---|
| 708 | { |
---|
| 709 | x = btCos(m_swingSpan1); |
---|
| 710 | y = -btSin(m_swingSpan1); |
---|
| 711 | } |
---|
| 712 | } |
---|
| 713 | } |
---|
| 714 | } |
---|
| 715 | target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0]; |
---|
| 716 | target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1]; |
---|
| 717 | target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2]; |
---|
| 718 | target.normalize(); |
---|
| 719 | m_swingAxis = -ivB.cross(target); |
---|
| 720 | m_swingCorrection = m_swingAxis.length(); |
---|
| 721 | m_swingAxis.normalize(); |
---|
| 722 | } |
---|
| 723 | } |
---|
[1963] | 724 | |
---|
[2882] | 725 | if (m_twistSpan >= btScalar(0.f)) |
---|
| 726 | { |
---|
| 727 | btVector3 twistAxis; |
---|
| 728 | computeTwistLimitInfo(qABTwist, m_twistAngle, twistAxis); |
---|
[1963] | 729 | |
---|
[2882] | 730 | if (m_twistAngle > m_twistSpan*m_limitSoftness) |
---|
| 731 | { |
---|
| 732 | m_solveTwistLimit = true; |
---|
[1963] | 733 | |
---|
[2882] | 734 | m_twistLimitRatio = 1.f; |
---|
| 735 | if (m_twistAngle < m_twistSpan && m_limitSoftness < 1.f - SIMD_EPSILON) |
---|
| 736 | { |
---|
| 737 | m_twistLimitRatio = (m_twistAngle - m_twistSpan * m_limitSoftness)/ |
---|
| 738 | (m_twistSpan - m_twistSpan * m_limitSoftness); |
---|
| 739 | } |
---|
[1963] | 740 | |
---|
[2882] | 741 | // twist correction tries to get back to soft limit |
---|
| 742 | m_twistCorrection = m_twistAngle - (m_twistSpan * m_limitSoftness); |
---|
[1963] | 743 | |
---|
[2882] | 744 | m_twistAxis = quatRotate(qB, -twistAxis); |
---|
[1963] | 745 | |
---|
[2882] | 746 | m_kTwist = btScalar(1.) / |
---|
| 747 | (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) + |
---|
| 748 | getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis)); |
---|
| 749 | } |
---|
[1963] | 750 | |
---|
[2882] | 751 | if (m_solveSwingLimit) |
---|
| 752 | m_twistAxisA = quatRotate(qA, -twistAxis); |
---|
[1963] | 753 | } |
---|
[2882] | 754 | else |
---|
| 755 | { |
---|
| 756 | m_twistAngle = btScalar(0.f); |
---|
| 757 | } |
---|
[1963] | 758 | } |
---|
[2882] | 759 | } // btConeTwistConstraint::calcAngleInfo2() |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | |
---|
| 763 | // given a cone rotation in constraint space, (pre: twist must already be removed) |
---|
| 764 | // this method computes its corresponding swing angle and axis. |
---|
| 765 | // more interestingly, it computes the cone/swing limit (angle) for this cone "pose". |
---|
| 766 | void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone, |
---|
| 767 | btScalar& swingAngle, // out |
---|
| 768 | btVector3& vSwingAxis, // out |
---|
| 769 | btScalar& swingLimit) // out |
---|
| 770 | { |
---|
| 771 | swingAngle = qCone.getAngle(); |
---|
| 772 | if (swingAngle > SIMD_EPSILON) |
---|
[1963] | 773 | { |
---|
[2882] | 774 | vSwingAxis = btVector3(qCone.x(), qCone.y(), qCone.z()); |
---|
| 775 | vSwingAxis.normalize(); |
---|
| 776 | if (fabs(vSwingAxis.x()) > SIMD_EPSILON) |
---|
[1963] | 777 | { |
---|
[2882] | 778 | // non-zero twist?! this should never happen. |
---|
| 779 | int wtf = 0; wtf = wtf; |
---|
| 780 | } |
---|
[1963] | 781 | |
---|
[2882] | 782 | // Compute limit for given swing. tricky: |
---|
| 783 | // Given a swing axis, we're looking for the intersection with the bounding cone ellipse. |
---|
| 784 | // (Since we're dealing with angles, this ellipse is embedded on the surface of a sphere.) |
---|
[1963] | 785 | |
---|
[2882] | 786 | // For starters, compute the direction from center to surface of ellipse. |
---|
| 787 | // This is just the perpendicular (ie. rotate 2D vector by PI/2) of the swing axis. |
---|
| 788 | // (vSwingAxis is the cone rotation (in z,y); change vars and rotate to (x,y) coords.) |
---|
| 789 | btScalar xEllipse = vSwingAxis.y(); |
---|
| 790 | btScalar yEllipse = -vSwingAxis.z(); |
---|
[1963] | 791 | |
---|
[2882] | 792 | // Now, we use the slope of the vector (using x/yEllipse) and find the length |
---|
| 793 | // of the line that intersects the ellipse: |
---|
| 794 | // x^2 y^2 |
---|
| 795 | // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits) |
---|
| 796 | // a^2 b^2 |
---|
| 797 | // Do the math and it should be clear. |
---|
[1963] | 798 | |
---|
[2882] | 799 | swingLimit = m_swingSpan1; // if xEllipse == 0, we have a pure vSwingAxis.z rotation: just use swingspan1 |
---|
| 800 | if (fabs(xEllipse) > SIMD_EPSILON) |
---|
| 801 | { |
---|
| 802 | btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse); |
---|
| 803 | btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2); |
---|
| 804 | norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1); |
---|
| 805 | btScalar swingLimit2 = (1 + surfaceSlope2) / norm; |
---|
| 806 | swingLimit = sqrt(swingLimit2); |
---|
[1963] | 807 | } |
---|
| 808 | |
---|
[2882] | 809 | // test! |
---|
| 810 | /*swingLimit = m_swingSpan2; |
---|
| 811 | if (fabs(vSwingAxis.z()) > SIMD_EPSILON) |
---|
[1963] | 812 | { |
---|
[2882] | 813 | btScalar mag_2 = m_swingSpan1*m_swingSpan1 + m_swingSpan2*m_swingSpan2; |
---|
| 814 | btScalar sinphi = m_swingSpan2 / sqrt(mag_2); |
---|
| 815 | btScalar phi = asin(sinphi); |
---|
| 816 | btScalar theta = atan2(fabs(vSwingAxis.y()),fabs(vSwingAxis.z())); |
---|
| 817 | btScalar alpha = 3.14159f - theta - phi; |
---|
| 818 | btScalar sinalpha = sin(alpha); |
---|
| 819 | swingLimit = m_swingSpan1 * sinphi/sinalpha; |
---|
| 820 | }*/ |
---|
| 821 | } |
---|
| 822 | else if (swingAngle < 0) |
---|
| 823 | { |
---|
| 824 | // this should never happen! |
---|
| 825 | int wtf = 0; wtf = wtf; |
---|
| 826 | } |
---|
| 827 | } |
---|
[1963] | 828 | |
---|
[2882] | 829 | btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const |
---|
| 830 | { |
---|
| 831 | // compute x/y in ellipse using cone angle (0 -> 2*PI along surface of cone) |
---|
| 832 | btScalar xEllipse = btCos(fAngleInRadians); |
---|
| 833 | btScalar yEllipse = btSin(fAngleInRadians); |
---|
[1963] | 834 | |
---|
[2882] | 835 | // Use the slope of the vector (using x/yEllipse) and find the length |
---|
| 836 | // of the line that intersects the ellipse: |
---|
| 837 | // x^2 y^2 |
---|
| 838 | // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits) |
---|
| 839 | // a^2 b^2 |
---|
| 840 | // Do the math and it should be clear. |
---|
[1963] | 841 | |
---|
[2882] | 842 | float swingLimit = m_swingSpan1; // if xEllipse == 0, just use axis b (1) |
---|
| 843 | if (fabs(xEllipse) > SIMD_EPSILON) |
---|
| 844 | { |
---|
| 845 | btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse); |
---|
| 846 | btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2); |
---|
| 847 | norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1); |
---|
| 848 | btScalar swingLimit2 = (1 + surfaceSlope2) / norm; |
---|
| 849 | swingLimit = sqrt(swingLimit2); |
---|
| 850 | } |
---|
[1963] | 851 | |
---|
[2882] | 852 | // convert into point in constraint space: |
---|
| 853 | // note: twist is x-axis, swing 1 and 2 are along the z and y axes respectively |
---|
| 854 | btVector3 vSwingAxis(0, xEllipse, -yEllipse); |
---|
| 855 | btQuaternion qSwing(vSwingAxis, swingLimit); |
---|
| 856 | btVector3 vPointInConstraintSpace(fLength,0,0); |
---|
| 857 | return quatRotate(qSwing, vPointInConstraintSpace); |
---|
| 858 | } |
---|
| 859 | |
---|
| 860 | // given a twist rotation in constraint space, (pre: cone must already be removed) |
---|
| 861 | // this method computes its corresponding angle and axis. |
---|
| 862 | void btConeTwistConstraint::computeTwistLimitInfo(const btQuaternion& qTwist, |
---|
| 863 | btScalar& twistAngle, // out |
---|
| 864 | btVector3& vTwistAxis) // out |
---|
| 865 | { |
---|
| 866 | btQuaternion qMinTwist = qTwist; |
---|
| 867 | twistAngle = qTwist.getAngle(); |
---|
| 868 | |
---|
| 869 | if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate. |
---|
| 870 | { |
---|
| 871 | qMinTwist = operator-(qTwist); |
---|
| 872 | twistAngle = qMinTwist.getAngle(); |
---|
[1963] | 873 | } |
---|
[2882] | 874 | if (twistAngle < 0) |
---|
| 875 | { |
---|
| 876 | // this should never happen |
---|
| 877 | int wtf = 0; wtf = wtf; |
---|
| 878 | } |
---|
[1963] | 879 | |
---|
[2882] | 880 | vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z()); |
---|
| 881 | if (twistAngle > SIMD_EPSILON) |
---|
| 882 | vTwistAxis.normalize(); |
---|
[1963] | 883 | } |
---|
| 884 | |
---|
[2882] | 885 | |
---|
| 886 | void btConeTwistConstraint::adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const |
---|
[1963] | 887 | { |
---|
[2882] | 888 | // the swing axis is computed as the "twist-free" cone rotation, |
---|
| 889 | // but the cone limit is not circular, but elliptical (if swingspan1 != swingspan2). |
---|
| 890 | // so, if we're outside the limits, the closest way back inside the cone isn't |
---|
| 891 | // along the vector back to the center. better (and more stable) to use the ellipse normal. |
---|
[1963] | 892 | |
---|
[2882] | 893 | // convert swing axis to direction from center to surface of ellipse |
---|
| 894 | // (ie. rotate 2D vector by PI/2) |
---|
| 895 | btScalar y = -vSwingAxis.z(); |
---|
| 896 | btScalar z = vSwingAxis.y(); |
---|
| 897 | |
---|
| 898 | // do the math... |
---|
| 899 | if (fabs(z) > SIMD_EPSILON) // avoid division by 0. and we don't need an update if z == 0. |
---|
| 900 | { |
---|
| 901 | // compute gradient/normal of ellipse surface at current "point" |
---|
| 902 | btScalar grad = y/z; |
---|
| 903 | grad *= m_swingSpan2 / m_swingSpan1; |
---|
| 904 | |
---|
| 905 | // adjust y/z to represent normal at point (instead of vector to point) |
---|
| 906 | if (y > 0) |
---|
| 907 | y = fabs(grad * z); |
---|
| 908 | else |
---|
| 909 | y = -fabs(grad * z); |
---|
| 910 | |
---|
| 911 | // convert ellipse direction back to swing axis |
---|
| 912 | vSwingAxis.setZ(-y); |
---|
| 913 | vSwingAxis.setY( z); |
---|
| 914 | vSwingAxis.normalize(); |
---|
| 915 | } |
---|
[1963] | 916 | } |
---|
[2882] | 917 | |
---|
| 918 | |
---|
| 919 | |
---|
| 920 | void btConeTwistConstraint::setMotorTarget(const btQuaternion &q) |
---|
| 921 | { |
---|
| 922 | btTransform trACur = m_rbA.getCenterOfMassTransform(); |
---|
| 923 | btTransform trBCur = m_rbB.getCenterOfMassTransform(); |
---|
| 924 | btTransform trABCur = trBCur.inverse() * trACur; |
---|
| 925 | btQuaternion qABCur = trABCur.getRotation(); |
---|
| 926 | btTransform trConstraintCur = (trBCur * m_rbBFrame).inverse() * (trACur * m_rbAFrame); |
---|
| 927 | btQuaternion qConstraintCur = trConstraintCur.getRotation(); |
---|
| 928 | |
---|
| 929 | btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * q * m_rbAFrame.getRotation(); |
---|
| 930 | setMotorTargetInConstraintSpace(qConstraint); |
---|
| 931 | } |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | void btConeTwistConstraint::setMotorTargetInConstraintSpace(const btQuaternion &q) |
---|
| 935 | { |
---|
| 936 | m_qTarget = q; |
---|
| 937 | |
---|
| 938 | // clamp motor target to within limits |
---|
| 939 | { |
---|
| 940 | btScalar softness = 1.f;//m_limitSoftness; |
---|
| 941 | |
---|
| 942 | // split into twist and cone |
---|
| 943 | btVector3 vTwisted = quatRotate(m_qTarget, vTwist); |
---|
| 944 | btQuaternion qTargetCone = shortestArcQuat(vTwist, vTwisted); qTargetCone.normalize(); |
---|
| 945 | btQuaternion qTargetTwist = qTargetCone.inverse() * m_qTarget; qTargetTwist.normalize(); |
---|
| 946 | |
---|
| 947 | // clamp cone |
---|
| 948 | if (m_swingSpan1 >= btScalar(0.05f) && m_swingSpan2 >= btScalar(0.05f)) |
---|
| 949 | { |
---|
| 950 | btScalar swingAngle, swingLimit; btVector3 swingAxis; |
---|
| 951 | computeConeLimitInfo(qTargetCone, swingAngle, swingAxis, swingLimit); |
---|
| 952 | |
---|
| 953 | if (fabs(swingAngle) > SIMD_EPSILON) |
---|
| 954 | { |
---|
| 955 | if (swingAngle > swingLimit*softness) |
---|
| 956 | swingAngle = swingLimit*softness; |
---|
| 957 | else if (swingAngle < -swingLimit*softness) |
---|
| 958 | swingAngle = -swingLimit*softness; |
---|
| 959 | qTargetCone = btQuaternion(swingAxis, swingAngle); |
---|
| 960 | } |
---|
| 961 | } |
---|
| 962 | |
---|
| 963 | // clamp twist |
---|
| 964 | if (m_twistSpan >= btScalar(0.05f)) |
---|
| 965 | { |
---|
| 966 | btScalar twistAngle; btVector3 twistAxis; |
---|
| 967 | computeTwistLimitInfo(qTargetTwist, twistAngle, twistAxis); |
---|
| 968 | |
---|
| 969 | if (fabs(twistAngle) > SIMD_EPSILON) |
---|
| 970 | { |
---|
| 971 | // eddy todo: limitSoftness used here??? |
---|
| 972 | if (twistAngle > m_twistSpan*softness) |
---|
| 973 | twistAngle = m_twistSpan*softness; |
---|
| 974 | else if (twistAngle < -m_twistSpan*softness) |
---|
| 975 | twistAngle = -m_twistSpan*softness; |
---|
| 976 | qTargetTwist = btQuaternion(twistAxis, twistAngle); |
---|
| 977 | } |
---|
| 978 | } |
---|
| 979 | |
---|
| 980 | m_qTarget = qTargetCone * qTargetTwist; |
---|
| 981 | } |
---|
| 982 | } |
---|
| 983 | |
---|
| 984 | |
---|
| 985 | //----------------------------------------------------------------------------- |
---|
| 986 | //----------------------------------------------------------------------------- |
---|
| 987 | //----------------------------------------------------------------------------- |
---|
| 988 | |
---|
| 989 | |
---|