[4790] | 1 | # $Id: BPyMathutils.py,v 1.6 2006/12/14 14:53:32 campbellbarton Exp $ |
---|
| 2 | # |
---|
| 3 | # -------------------------------------------------------------------------- |
---|
| 4 | # helper functions to be used by other scripts |
---|
| 5 | # -------------------------------------------------------------------------- |
---|
| 6 | # ***** BEGIN GPL LICENSE BLOCK ***** |
---|
| 7 | # |
---|
| 8 | # This program is free software; you can redistribute it and/or |
---|
| 9 | # modify it under the terms of the GNU General Public License |
---|
| 10 | # as published by the Free Software Foundation; either version 2 |
---|
| 11 | # of the License, or (at your option) any later version. |
---|
| 12 | # |
---|
| 13 | # This program is distributed in the hope that it will be useful, |
---|
| 14 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 15 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 16 | # GNU General Public License for more details. |
---|
| 17 | # |
---|
| 18 | # You should have received a copy of the GNU General Public License |
---|
| 19 | # along with this program; if not, write to the Free Software Foundation, |
---|
| 20 | # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
---|
| 21 | # |
---|
| 22 | # ***** END GPL LICENCE BLOCK ***** |
---|
| 23 | # -------------------------------------------------------------------------- |
---|
| 24 | |
---|
| 25 | import Blender |
---|
| 26 | from Blender.Mathutils import * |
---|
| 27 | |
---|
| 28 | # ------ Mersenne Twister - start |
---|
| 29 | |
---|
| 30 | # Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. |
---|
| 31 | # Any feedback is very welcome. For any question, comments, |
---|
| 32 | # see http://www.math.keio.ac.jp/matumoto/emt.html or email |
---|
| 33 | # matumoto@math.keio.ac.jp |
---|
| 34 | |
---|
| 35 | # The link above is dead, this is the new one: |
---|
| 36 | # http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html |
---|
| 37 | # And here the license info, from Mr. Matsumoto's site: |
---|
| 38 | # Until 2001/4/6, MT had been distributed under GNU Public License, |
---|
| 39 | # but after 2001/4/6, we decided to let MT be used for any purpose, including |
---|
| 40 | # commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered |
---|
| 41 | # to be usable freely. |
---|
| 42 | # |
---|
| 43 | # So from the year above (1997), this code is under GPL. |
---|
| 44 | |
---|
| 45 | # Period parameters |
---|
| 46 | N = 624 |
---|
| 47 | M = 397 |
---|
| 48 | MATRIX_A = 0x9908b0dfL # constant vector a |
---|
| 49 | UPPER_MASK = 0x80000000L # most significant w-r bits |
---|
| 50 | LOWER_MASK = 0x7fffffffL # least significant r bits |
---|
| 51 | |
---|
| 52 | # Tempering parameters |
---|
| 53 | TEMPERING_MASK_B = 0x9d2c5680L |
---|
| 54 | TEMPERING_MASK_C = 0xefc60000L |
---|
| 55 | |
---|
| 56 | def TEMPERING_SHIFT_U(y): |
---|
| 57 | return (y >> 11) |
---|
| 58 | |
---|
| 59 | def TEMPERING_SHIFT_S(y): |
---|
| 60 | return (y << 7) |
---|
| 61 | |
---|
| 62 | def TEMPERING_SHIFT_T(y): |
---|
| 63 | return (y << 15) |
---|
| 64 | |
---|
| 65 | def TEMPERING_SHIFT_L(y): |
---|
| 66 | return (y >> 18) |
---|
| 67 | |
---|
| 68 | mt = [] # the array for the state vector |
---|
| 69 | mti = N+1 # mti==N+1 means mt[N] is not initialized |
---|
| 70 | |
---|
| 71 | # initializing the array with a NONZERO seed |
---|
| 72 | def sgenrand(seed): |
---|
| 73 | # setting initial seeds to mt[N] using |
---|
| 74 | # the generator Line 25 of Table 1 in |
---|
| 75 | # [KNUTH 1981, The Art of Computer Programming |
---|
| 76 | # Vol. 2 (2nd Ed.), pp102] |
---|
| 77 | |
---|
| 78 | global mt, mti |
---|
| 79 | |
---|
| 80 | mt = [] |
---|
| 81 | |
---|
| 82 | mt.append(seed & 0xffffffffL) |
---|
| 83 | for i in xrange(1, N + 1): |
---|
| 84 | mt.append((69069 * mt[i-1]) & 0xffffffffL) |
---|
| 85 | |
---|
| 86 | mti = i |
---|
| 87 | # end sgenrand |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | def genrand(): |
---|
| 91 | global mt, mti |
---|
| 92 | |
---|
| 93 | mag01 = [0x0L, MATRIX_A] |
---|
| 94 | # mag01[x] = x * MATRIX_A for x=0,1 |
---|
| 95 | y = 0 |
---|
| 96 | |
---|
| 97 | if mti >= N: # generate N words at one time |
---|
| 98 | if mti == N+1: # if sgenrand() has not been called, |
---|
| 99 | sgenrand(4357) # a default initial seed is used |
---|
| 100 | |
---|
| 101 | for kk in xrange((N-M) + 1): |
---|
| 102 | y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK) |
---|
| 103 | mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1] |
---|
| 104 | |
---|
| 105 | for kk in xrange(kk, N): |
---|
| 106 | y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK) |
---|
| 107 | mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1] |
---|
| 108 | |
---|
| 109 | y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK) |
---|
| 110 | mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1] |
---|
| 111 | |
---|
| 112 | mti = 0 |
---|
| 113 | |
---|
| 114 | y = mt[mti] |
---|
| 115 | mti += 1 |
---|
| 116 | y ^= TEMPERING_SHIFT_U(y) |
---|
| 117 | y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B |
---|
| 118 | y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C |
---|
| 119 | y ^= TEMPERING_SHIFT_L(y) |
---|
| 120 | |
---|
| 121 | return ( float(y) / 0xffffffffL ) # reals |
---|
| 122 | |
---|
| 123 | #------ Mersenne Twister -- end |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | """ 2d convexhull |
---|
| 129 | Based from Dinu C. Gherman's work, |
---|
| 130 | modified for Blender/Mathutils by Campell Barton |
---|
| 131 | """ |
---|
| 132 | ###################################################################### |
---|
| 133 | # Public interface |
---|
| 134 | ###################################################################### |
---|
| 135 | from Blender.Mathutils import DotVecs |
---|
| 136 | def convexHull(point_list_2d): |
---|
| 137 | """Calculate the convex hull of a set of vectors |
---|
| 138 | The vectors can be 3 or 4d but only the Xand Y are used. |
---|
| 139 | returns a list of convex hull indicies to the given point list |
---|
| 140 | """ |
---|
| 141 | |
---|
| 142 | ###################################################################### |
---|
| 143 | # Helpers |
---|
| 144 | ###################################################################### |
---|
| 145 | |
---|
| 146 | def _myDet(p, q, r): |
---|
| 147 | """Calc. determinant of a special matrix with three 2D points. |
---|
| 148 | |
---|
| 149 | The sign, "-" or "+", determines the side, right or left, |
---|
| 150 | respectivly, on which the point r lies, when measured against |
---|
| 151 | a directed vector from p to q. |
---|
| 152 | """ |
---|
| 153 | return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y) |
---|
| 154 | |
---|
| 155 | def _isRightTurn((p, q, r)): |
---|
| 156 | "Do the vectors pq:qr form a right turn, or not?" |
---|
| 157 | #assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0] |
---|
| 158 | if _myDet(p[0], q[0], r[0]) < 0: |
---|
| 159 | return 1 |
---|
| 160 | else: |
---|
| 161 | return 0 |
---|
| 162 | |
---|
| 163 | # Get a local list copy of the points and sort them lexically. |
---|
| 164 | points = [(p, i) for i, p in enumerate(point_list_2d)] |
---|
| 165 | |
---|
| 166 | try: points.sort(key = lambda a: (a[0].x, a[0].y)) |
---|
| 167 | except: points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y))) |
---|
| 168 | |
---|
| 169 | # Build upper half of the hull. |
---|
| 170 | upper = [points[0], points[1]] # cant remove these. |
---|
| 171 | for i in xrange(len(points)-2): |
---|
| 172 | upper.append(points[i+2]) |
---|
| 173 | while len(upper) > 2 and not _isRightTurn(upper[-3:]): |
---|
| 174 | del upper[-2] |
---|
| 175 | |
---|
| 176 | # Build lower half of the hull. |
---|
| 177 | points.reverse() |
---|
| 178 | lower = [points.pop(0), points.pop(1)] |
---|
| 179 | for p in points: |
---|
| 180 | lower.append(p) |
---|
| 181 | while len(lower) > 2 and not _isRightTurn(lower[-3:]): |
---|
| 182 | del lower[-2] |
---|
| 183 | |
---|
| 184 | # Concatenate both halfs and return. |
---|
| 185 | return [p[1] for ls in (upper, lower) for p in ls] |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | def plane2mat(plane, normalize= False): |
---|
| 189 | ''' |
---|
| 190 | Takes a plane and converts to a matrix |
---|
| 191 | points between 0 and 1 are up |
---|
| 192 | 1 and 2 are right |
---|
| 193 | assumes the plane has 90d corners |
---|
| 194 | ''' |
---|
| 195 | cent= (plane[0]+plane[1]+plane[2]+plane[3] ) /4.0 |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | up= cent - ((plane[0]+plane[1])/2.0) |
---|
| 199 | right= cent - ((plane[1]+plane[2])/2.0) |
---|
| 200 | z= CrossVecs(up, right) |
---|
| 201 | |
---|
| 202 | if normalize: |
---|
| 203 | up.normalize() |
---|
| 204 | right.normalize() |
---|
| 205 | z.normalize() |
---|
| 206 | |
---|
| 207 | mat= Matrix(up, right, z) |
---|
| 208 | |
---|
| 209 | # translate |
---|
| 210 | mat.resize4x4() |
---|
| 211 | tmat= Blender.Mathutils.TranslationMatrix(cent) |
---|
| 212 | return mat * tmat |
---|